Bernoulli polynomials of the second kind

Polynomial sequence

The Bernoulli polynomials of the second kind[1][2] ψn(x), also known as the Fontana–Bessel polynomials,[3] are the polynomials defined by the following generating function: z ( 1 + z ) x ln ( 1 + z ) = n = 0 z n ψ n ( x ) , | z | < 1. {\displaystyle {\frac {z(1+z)^{x}}{\ln(1+z)}}=\sum _{n=0}^{\infty }z^{n}\psi _{n}(x),\qquad |z|<1.}

The first five polynomials are: ψ 0 ( x ) = 1 ψ 1 ( x ) = x + 1 2 ψ 2 ( x ) = 1 2 x 2 1 12 ψ 3 ( x ) = 1 6 x 3 1 4 x 2 + 1 24 ψ 4 ( x ) = 1 24 x 4 1 6 x 3 + 1 6 x 2 19 720 {\displaystyle {\begin{aligned}\psi _{0}(x)&=1\\[2mm]\psi _{1}(x)&=x+{\frac {1}{2}}\\[2mm]\psi _{2}(x)&={\frac {1}{2}}x^{2}-{\frac {1}{12}}\\[2mm]\psi _{3}(x)&={\frac {1}{6}}x^{3}-{\frac {1}{4}}x^{2}+{\frac {1}{24}}\\[2mm]\psi _{4}(x)&={\frac {1}{24}}x^{4}-{\frac {1}{6}}x^{3}+{\frac {1}{6}}x^{2}-{\frac {19}{720}}\end{aligned}}}

Some authors define these polynomials slightly differently[4][5] z ( 1 + z ) x ln ( 1 + z ) = n = 0 z n n ! ψ n ( x ) , | z | < 1 , {\displaystyle {\frac {z\left(1+z\right)^{x}}{\ln(1+z)}}=\sum _{n=0}^{\infty }{\frac {z^{n}}{n!}}\psi _{n}^{*}(x),\qquad |z|<1,} so that ψ n ( x ) = ψ n ( x ) n ! {\displaystyle \psi _{n}^{*}(x)=\psi _{n}(x)\,n!} and may also use a different notation for them (the most used alternative notation is bn(x)). Under this convention, the polynomials form a Sheffer sequence.

The Bernoulli polynomials of the second kind were largely studied by the Hungarian mathematician Charles Jordan,[1][2] but their history may also be traced back to the much earlier works.[3]

Integral representations

The Bernoulli polynomials of the second kind may be represented via these integrals[1][2] ψ n ( x ) = x x + 1 ( u n ) d u = 0 1 ( x + u n ) d u {\displaystyle \psi _{n}(x)=\int _{x}^{x+1}\!{\binom {u}{n}}\,du=\int _{0}^{1}{\binom {x+u}{n}}\,du} as well as[3] ψ n ( x ) = ( 1 ) n + 1 π 0 π cos π x sin π x ln z ( 1 + z ) n z x d z ln 2 z + π 2 , 1 x n 1 ψ n ( x ) = ( 1 ) n + 1 π + π cos π x v sin π x ( 1 + e v ) n e v ( x + 1 ) v 2 + π 2 d v , 1 x n 1 {\displaystyle {\begin{aligned}\psi _{n}(x)&={\frac {\left(-1\right)^{n+1}}{\pi }}\int _{0}^{\infty }{\frac {\pi \cos \pi x-\sin \pi x\ln z}{(1+z)^{n}}}\cdot {\frac {z^{x}dz}{\ln ^{2}z+\pi ^{2}}},\qquad -1\leq x\leq n-1\,\\[3mm]\psi _{n}(x)&={\frac {\left(-1\right)^{n+1}}{\pi }}\int _{-\infty }^{+\infty }{\frac {\pi \cos \pi x-v\sin \pi x}{\left(1+e^{v}\right)^{n}}}\cdot {\frac {e^{v(x+1)}}{v^{2}+\pi ^{2}}}\,dv,\qquad -1\leq x\leq n-1\,\end{aligned}}}

These polynomials are, therefore, up to a constant, the antiderivative of the binomial coefficient and also that of the falling factorial.[1][2][3]

Explicit formula

For an arbitrary n, these polynomials may be computed explicitly via the following summation formula[1][2][3] ψ n ( x ) = 1 ( n 1 ) ! l = 0 n 1 s ( n 1 , l ) l + 1 x l + 1 + G n , n = 1 , 2 , 3 , {\displaystyle \psi _{n}(x)={\frac {1}{(n-1)!}}\sum _{l=0}^{n-1}{\frac {s(n-1,l)}{l+1}}x^{l+1}+G_{n},\qquad n=1,2,3,\ldots } where s(n,l) are the signed Stirling numbers of the first kind and Gn are the Gregory coefficients.

The expansion of the Bernoulli polynomials of the second kind into a Newton series reads[1][2] ψ n ( x ) = G 0 ( x n ) + G 1 ( x n 1 ) + G 2 ( x n 2 ) + + G n {\displaystyle \psi _{n}(x)=G_{0}{\binom {x}{n}}+G_{1}{\binom {x}{n-1}}+G_{2}{\binom {x}{n-2}}+\ldots +G_{n}} It can be shown using the second integral representation and Vandermonde's identity.

Recurrence formula

The Bernoulli polynomials of the second kind satisfy the recurrence relation[1][2] ψ n ( x + 1 ) ψ n ( x ) = ψ n 1 ( x ) {\displaystyle \psi _{n}(x+1)-\psi _{n}(x)=\psi _{n-1}(x)} or equivalently Δ ψ n ( x ) = ψ n 1 ( x ) {\displaystyle \Delta \psi _{n}(x)=\psi _{n-1}(x)}

The repeated difference produces[1][2] Δ m ψ n ( x ) = ψ n m ( x ) {\displaystyle \Delta ^{m}\psi _{n}(x)=\psi _{n-m}(x)}

Symmetry property

The main property of the symmetry reads[2][4] ψ n ( 1 2 n 1 + x ) = ( 1 ) n ψ n ( 1 2 n 1 x ) {\displaystyle \psi _{n}{\left({\tfrac {1}{2}}n-1+x\right)}=\left(-1\right)^{n}\psi _{n}{\left({\tfrac {1}{2}}n-1-x\right)}}

Some further properties and particular values

Some properties and particular values of these polynomials include ψ n ( 0 ) = G n ψ n ( 1 ) = G n 1 + G n ψ n ( 1 ) = ( 1 ) n + 1 m = 0 n | G m | = ( 1 ) n C n ψ n ( n 2 ) = | G n | ψ n ( n 1 ) = ( 1 ) n ψ n ( 1 ) = 1 m = 1 n | G m | ψ 2 n ( n 1 ) = M 2 n ψ 2 n ( n 1 + y ) = ψ 2 n ( n 1 y ) ψ 2 n + 1 ( n 1 2 + y ) = ψ 2 n + 1 ( n 1 2 y ) ψ 2 n + 1 ( n 1 2 ) = 0 {\displaystyle {\begin{aligned}&\psi _{n}(0)=G_{n}\\[2mm]&\psi _{n}(1)=G_{n-1}+G_{n}\\[2mm]&\psi _{n}(-1)=\left(-1\right)^{n+1}\sum _{m=0}^{n}\left|G_{m}\right|=\left(-1\right)^{n}C_{n}\\[2mm]&\psi _{n}(n-2)=-\left|G_{n}\right|\\[2mm]&\psi _{n}(n-1)=\left(-1\right)^{n}\psi _{n}(-1)=1-\sum _{m=1}^{n}\left|G_{m}\right|\\[2mm]&\psi _{2n}(n-1)=M_{2n}\\[2mm]&\psi _{2n}(n-1+y)=\psi _{2n}(n-1-y)\\[2mm]&\psi _{2n+1}(n-{\tfrac {1}{2}}+y)=-\psi _{2n+1}(n-{\tfrac {1}{2}}-y)\\[2mm]&\psi _{2n+1}(n-{\tfrac {1}{2}})=0\end{aligned}}} where Cn are the Cauchy numbers of the second kind and Mn are the central difference coefficients.[1][2][3]

Some series involving the Bernoulli polynomials of the second kind

The digamma function Ψ(x) may be expanded into a series with the Bernoulli polynomials of the second kind in the following way[3] Ψ ( v ) = ln ( v + a ) + n = 1 ( 1 ) n ψ n ( a ) ( n 1 ) ! ( v ) n , ( v ) > a , {\displaystyle \Psi (v)=\ln(v+a)+\sum _{n=1}^{\infty }{\frac {(-1)^{n}\psi _{n}(a)\,(n-1)!}{(v)_{n}}},\qquad \Re (v)>-a,} and hence[3] γ = ln ( a + 1 ) n = 1 ( 1 ) n ψ n ( a ) n , ( a ) > 1 {\displaystyle \gamma =-\ln(a+1)-\sum _{n=1}^{\infty }{\frac {(-1)^{n}\psi _{n}(a)}{n}},\qquad \Re (a)>-1} and γ = n = 1 ( 1 ) n + 1 2 n { ψ n ( a ) + ψ n ( a 1 + a ) } , a > 1 {\displaystyle \gamma =\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n}}\left\{\psi _{n}(a)+\psi _{n}\left(-{\frac {a}{1+a}}\right)\right\},\quad a>-1} where γ is Euler's constant. Furthermore, we also have[3] Ψ ( v ) = 1 v + a 1 2 { ln Γ ( v + a ) + v 1 2 ln ( 2 π ) 1 2 + n = 1 ( 1 ) n ψ n + 1 ( a ) ( v ) n ( n 1 ) ! } , ( v ) > a , {\displaystyle \Psi (v)={\frac {1}{v+a-{\frac {1}{2}}}}\left\{\ln \Gamma (v+a)+v-{\frac {1}{2}}\ln(2\pi )-{\frac {1}{2}}+\sum _{n=1}^{\infty }{\frac {\left(-1\right)^{n}\psi _{n+1}(a)}{(v)_{n}}}\left(n-1\right)!\right\},\quad \Re (v)>-a,} where Γ(x) is the gamma function. The Hurwitz and Riemann zeta functions may be expanded into these polynomials as follows[3] ζ ( s , v ) = ( v + a ) 1 s s 1 + n = 0 ( 1 ) n ψ n + 1 ( a ) k = 0 n ( 1 ) k ( n k ) ( k + v ) s {\displaystyle \zeta (s,v)={\frac {(v+a)^{1-s}}{s-1}}+\sum _{n=0}^{\infty }(-1)^{n}\psi _{n+1}(a)\sum _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}(k+v)^{-s}} and ζ ( s ) = ( a + 1 ) 1 s s 1 + n = 0 ( 1 ) n ψ n + 1 ( a ) k = 0 n ( 1 ) k ( n k ) ( k + 1 ) s {\displaystyle \zeta (s)={\frac {(a+1)^{1-s}}{s-1}}+\sum _{n=0}^{\infty }(-1)^{n}\psi _{n+1}(a)\sum _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}(k+1)^{-s}} and also ζ ( s ) = 1 + ( a + 2 ) 1 s s 1 + n = 0 ( 1 ) n ψ n + 1 ( a ) k = 0 n ( 1 ) k ( n k ) ( k + 2 ) s {\displaystyle \zeta (s)=1+{\frac {(a+2)^{1-s}}{s-1}}+\sum _{n=0}^{\infty }(-1)^{n}\psi _{n+1}(a)\sum _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}(k+2)^{-s}}

The Bernoulli polynomials of the second kind are also involved in the following relationship[3] ( v + a 1 2 ) ζ ( s , v ) = ζ ( s 1 , v + a ) s 1 + ζ ( s 1 , v ) + n = 0 ( 1 ) n ψ n + 2 ( a ) k = 0 n ( 1 ) k ( n k ) ( k + v ) s {\displaystyle {\big (}v+a-{\tfrac {1}{2}}{\big )}\zeta (s,v)=-{\frac {\zeta (s-1,v+a)}{s-1}}+\zeta (s-1,v)+\sum _{n=0}^{\infty }\left(-1\right)^{n}\psi _{n+2}(a)\sum _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}(k+v)^{-s}} between the zeta functions, as well as in various formulas for the Stieltjes constants, e.g.[3] γ m ( v ) = ln m + 1 ( v + a ) m + 1 + n = 0 ( 1 ) n ψ n + 1 ( a ) k = 0 n ( 1 ) k ( n k ) ln m ( k + v ) k + v {\displaystyle \gamma _{m}(v)=-{\frac {\ln ^{m+1}(v+a)}{m+1}}+\sum _{n=0}^{\infty }(-1)^{n}\psi _{n+1}(a)\sum _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}{\frac {\ln ^{m}(k+v)}{k+v}}} and γ m ( v ) = 1 1 2 v a { ( 1 ) m m + 1 ζ ( m + 1 ) ( 0 , v + a ) ( 1 ) m ζ ( m ) ( 0 , v ) n = 0 ( 1 ) n ψ n + 2 ( a ) k = 0 n ( 1 ) k ( n k ) ln m ( k + v ) k + v } {\displaystyle \gamma _{m}(v)={\frac {1}{{\tfrac {1}{2}}-v-a}}\left\{{\frac {(-1)^{m}}{m+1}}\,\zeta ^{(m+1)}(0,v+a)-(-1)^{m}\zeta ^{(m)}(0,v)-\sum _{n=0}^{\infty }(-1)^{n}\psi _{n+2}(a)\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}{\frac {\ln ^{m}(k+v)}{k+v}}\right\}} which are both valid for ( a ) > 1 {\displaystyle \Re (a)>-1} and v C { 0 , 1 , 2 , } {\displaystyle v\in \mathbb {C} \setminus \!\{0,-1,-2,\ldots \}} .

See also

  • Bernoulli polynomials
  • Stirling polynomials
  • Gregory coefficients
  • Bernoulli numbers
  • Difference polynomials
  • Poly-Bernoulli number
  • Mittag-Leffler polynomials

References

  1. ^ a b c d e f g h i Jordan, Charles (1928). "Sur des polynomes analogues aux polynomes de Bernoulli, et sur des formules de sommation analogues à celle de Maclaurin-Euler". Acta Sci. Math. (Szeged). 4: 130–150.
  2. ^ a b c d e f g h i j Jordan, Charles (1965). The Calculus of Finite Differences (3rd Edition). Chelsea Publishing Company.
  3. ^ a b c d e f g h i j k l Blagouchine, Iaroslav V. (2018). "Three notes on Ser's and Hasse's representations for the zeta-functions" (PDF). INTEGERS: The Electronic Journal of Combinatorial Number Theory. 18A (#A3): 1–45. arXiv
  4. ^ a b Roman, S. (1984). The Umbral Calculus. New York: Academic Press.
  5. ^ Weisstein, Eric W. Bernoulli Polynomial of the Second Kind. From MathWorld--A Wolfram Web Resource.

Mathematics