Chandrasekhar virial equations

In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.[1][2][3]

Mathematical description

Consider a fluid mass M {\displaystyle M} of volume V {\displaystyle V} with density ρ ( x , t ) {\displaystyle \rho (\mathbf {x} ,t)} and an isotropic pressure p ( x , t ) {\displaystyle p(\mathbf {x} ,t)} with vanishing pressure at the bounding surfaces. Here, x {\displaystyle \mathbf {x} } refers to a frame of reference attached to the center of mass. Before describing the virial equations, let's define some moments.

The density moments are defined as

M = V ρ d x , I i = V ρ x i d x , I i j = V ρ x i x j d x , I i j k = V ρ x i x j x k d x , I i j k = V ρ x i x j x k x d x , etc. {\displaystyle M=\int _{V}\rho \,d\mathbf {x} ,\quad I_{i}=\int _{V}\rho x_{i}\,d\mathbf {x} ,\quad I_{ij}=\int _{V}\rho x_{i}x_{j}\,d\mathbf {x} ,\quad I_{ijk}=\int _{V}\rho x_{i}x_{j}x_{k}\,d\mathbf {x} ,\quad I_{ijk\ell }=\int _{V}\rho x_{i}x_{j}x_{k}x_{\ell }\,d\mathbf {x} ,\quad {\text{etc.}}}

the pressure moments are

Π = V p d x , Π i = V p x i d x , Π i j = V p x i x j d x , Π i j k = V p x i x j x k d x etc. {\displaystyle \Pi =\int _{V}p\,d\mathbf {x} ,\quad \Pi _{i}=\int _{V}px_{i}\,d\mathbf {x} ,\quad \Pi _{ij}=\int _{V}px_{i}x_{j}\,d\mathbf {x} ,\quad \Pi _{ijk}=\int _{V}px_{i}x_{j}x_{k}d\mathbf {x} \quad {\text{etc.}}}

the kinetic energy moments are

T i j = 1 2 V ρ u i u j d x , T i j ; k = 1 2 V ρ u i u j x k d x , T i j ; k = 1 2 V ρ u i u j x k x d x , e t c . {\displaystyle T_{ij}={\frac {1}{2}}\int _{V}\rho u_{i}u_{j}\,d\mathbf {x} ,\quad T_{ij;k}={\frac {1}{2}}\int _{V}\rho u_{i}u_{j}x_{k}\,d\mathbf {x} ,\quad T_{ij;k\ell }={\frac {1}{2}}\int _{V}\rho u_{i}u_{j}x_{k}x_{\ell }\,d\mathbf {x} ,\quad \mathrm {etc.} }

and the Chandrasekhar potential energy tensor moments are

W i j = 1 2 V ρ Φ i j d x , W i j ; k = 1 2 V ρ Φ i j x k d x , W i j ; k = 1 2 V ρ Φ i j x k x d x , e t c . where Φ i j = G V ρ ( x ) ( x i x i ) ( x j x j ) | x x | 3 d x {\displaystyle W_{ij}=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}\,d\mathbf {x} ,\quad W_{ij;k}=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}x_{k}\,d\mathbf {x} ,\quad W_{ij;k\ell }=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}x_{k}x_{\ell }d\mathbf {x} ,\quad \mathrm {etc.} \quad {\text{where}}\quad \Phi _{ij}=G\int _{V}\rho (\mathbf {x'} ){\frac {(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}\,d\mathbf {x'} }

where G {\displaystyle G} is the gravitational constant.

All the tensors are symmetric by definition. The moment of inertia I {\displaystyle I} , kinetic energy T {\displaystyle T} and the potential energy W {\displaystyle W} are just traces of the following tensors

I = I i i = V ρ | x | 2 d x , T = T i i = 1 2 V ρ | u | 2 d x , W = W i i = 1 2 V ρ Φ d x where Φ = Φ i i = V ρ ( x ) | x x | d x {\displaystyle I=I_{ii}=\int _{V}\rho |\mathbf {x} |^{2}\,d\mathbf {x} ,\quad T=T_{ii}={\frac {1}{2}}\int _{V}\rho |\mathbf {u} |^{2}\,d\mathbf {x} ,\quad W=W_{ii}=-{\frac {1}{2}}\int _{V}\rho \Phi \,d\mathbf {x} \quad {\text{where}}\quad \Phi =\Phi _{ii}=\int _{V}{\frac {\rho (\mathbf {x'} )}{|\mathbf {x} -\mathbf {x'} |}}\,d\mathbf {x'} }

Chandrasekhar assumed that the fluid mass is subjected to pressure force and its own gravitational force, then the Euler equations is

ρ d u i d t = p x i + ρ Φ x i , where d d t = t + u j x j {\displaystyle \rho {\frac {du_{i}}{dt}}=-{\frac {\partial p}{\partial x_{i}}}+\rho {\frac {\partial \Phi }{\partial x_{i}}},\quad {\text{where}}\quad {\frac {d}{dt}}={\frac {\partial }{\partial t}}+u_{j}{\frac {\partial }{\partial x_{j}}}}

First order virial equation

d 2 I i d t 2 = 0 {\displaystyle {\frac {d^{2}I_{i}}{dt^{2}}}=0}

Second order virial equation

1 2 d 2 I i j d t 2 = 2 T i j + W i j + δ i j Π {\displaystyle {\frac {1}{2}}{\frac {d^{2}I_{ij}}{dt^{2}}}=2T_{ij}+W_{ij}+\delta _{ij}\Pi }

In steady state, the equation becomes

2 T i j + W i j = δ i j Π {\displaystyle 2T_{ij}+W_{ij}=-\delta _{ij}\Pi }

Third order virial equation

1 6 d 2 I i j k d t 2 = 2 ( T i j ; k + T j k ; i + T k i ; j ) + W i j ; k + W j k ; i + W k i ; j + δ i j Π k + δ j k Π i + δ k i Π j {\displaystyle {\frac {1}{6}}{\frac {d^{2}I_{ijk}}{dt^{2}}}=2(T_{ij;k}+T_{jk;i}+T_{ki;j})+W_{ij;k}+W_{jk;i}+W_{ki;j}+\delta _{ij}\Pi _{k}+\delta _{jk}\Pi _{i}+\delta _{ki}\Pi _{j}}

In steady state, the equation becomes

2 ( T i j ; k + T i k ; j ) + W i j ; k + W i k ; j = δ i j Π K δ i k Π j {\displaystyle 2(T_{ij;k}+T_{ik;j})+W_{ij;k}+W_{ik;j}=-\delta _{ij}\Pi _{K}-\delta _{ik}\Pi _{j}}

Virial equations in rotating frame of reference

The Euler equations in a rotating frame of reference, rotating with an angular velocity Ω {\displaystyle \mathbf {\Omega } } is given by

ρ d u i d t = p x i + ρ Φ x i + 1 2 ρ x i | Ω × x | 2 + 2 ρ ε i m u Ω m {\displaystyle \rho {\frac {du_{i}}{dt}}=-{\frac {\partial p}{\partial x_{i}}}+\rho {\frac {\partial \Phi }{\partial x_{i}}}+{\frac {1}{2}}\rho {\frac {\partial }{\partial x_{i}}}|\mathbf {\Omega } \times \mathbf {x} |^{2}+2\rho \varepsilon _{i\ell m}u_{\ell }\Omega _{m}}

where ε i m {\displaystyle \varepsilon _{i\ell m}} is the Levi-Civita symbol, 1 2 | Ω × x | 2 {\displaystyle {\frac {1}{2}}|\mathbf {\Omega } \times \mathbf {x} |^{2}} is the centrifugal acceleration and 2 u × Ω {\displaystyle 2\mathbf {u} \times \mathbf {\Omega } } is the Coriolis acceleration.

Steady state second order virial equation

In steady state, the second order virial equation becomes

2 T i j + W i j + Ω 2 I i j Ω i Ω k I k j + 2 ϵ i m Ω m V ρ u x j d x = δ i j Π {\displaystyle 2T_{ij}+W_{ij}+\Omega ^{2}I_{ij}-\Omega _{i}\Omega _{k}I_{kj}+2\epsilon _{i\ell m}\Omega _{m}\int _{V}\rho u_{\ell }x_{j}\,d\mathbf {x} =-\delta _{ij}\Pi }

If the axis of rotation is chosen in x 3 {\displaystyle x_{3}} direction, the equation becomes

W i j + Ω 2 ( I i j δ i 3 I 3 j ) = δ i j Π {\displaystyle W_{ij}+\Omega ^{2}(I_{ij}-\delta _{i3}I_{3j})=-\delta _{ij}\Pi }

and Chandrasekhar shows that in this case, the tensors can take only the following form

W i j = ( W 11 W 12 0 W 21 W 22 0 0 0 W 33 ) , I i j = ( I 11 I 12 0 I 21 I 22 0 0 0 I 33 ) {\displaystyle W_{ij}={\begin{pmatrix}W_{11}&W_{12}&0\\W_{21}&W_{22}&0\\0&0&W_{33}\end{pmatrix}},\quad I_{ij}={\begin{pmatrix}I_{11}&I_{12}&0\\I_{21}&I_{22}&0\\0&0&I_{33}\end{pmatrix}}}

Steady state third order virial equation

In steady state, the third order virial equation becomes

2 ( T i j ; k + T i k ; j ) + W i j ; k + W i k ; j + Ω 2 I i j k Ω i Ω I j k + 2 ε i m Ω m V ρ u x j x k d x = δ i j Π k δ i k Π j {\displaystyle 2(T_{ij;k}+T_{ik;j})+W_{ij;k}+W_{ik;j}+\Omega ^{2}I_{ijk}-\Omega _{i}\Omega _{\ell }I_{\ell jk}+2\varepsilon _{i\ell m}\Omega _{m}\int _{V}\rho u_{\ell }x_{j}x_{k}\,d\mathbf {x} =-\delta _{ij}\Pi _{k}-\delta _{ik}\Pi _{j}}

If the axis of rotation is chosen in x 3 {\displaystyle x_{3}} direction, the equation becomes

W i j ; k + W i k ; j + Ω 2 ( I i j k δ i 3 I 3 j k ) = ( δ i j Π k + δ i k Π j ) {\displaystyle W_{ij;k}+W_{ik;j}+\Omega ^{2}(I_{ijk}-\delta _{i3}I_{3jk})=-(\delta _{ij}\Pi _{k}+\delta _{ik}\Pi _{j})}

Steady state fourth order virial equation

With x 3 {\displaystyle x_{3}} being the axis of rotation, the steady state fourth order virial equation is also derived by Chandrasekhar in 1968.[4] The equation reads as

1 3 ( 2 W i j ; k l + 2 W i k ; l j + 2 W i l ; j k + W i j ; k ; l + W i k ; l ; j + W i l ; j ; k ) + Ω 2 ( I i j k l δ i 3 I 3 j k l ) = ( δ i j Π k l + δ i k Π l j + δ i l Π j k ) {\displaystyle {\frac {1}{3}}(2W_{ij;kl}+2W_{ik;lj}+2W_{il;jk}+W_{ij;k;l}+W_{ik;l;j}+W_{il;j;k})+\Omega ^{2}(I_{ijkl}-\delta _{i3}I_{3jkl})=-(\delta _{ij}\Pi _{kl}+\delta _{ik}\Pi _{lj}+\delta _{il}\Pi _{jk})}

Virial equations with viscous stresses

Consider the Navier-Stokes equations instead of Euler equations,

ρ d u i d t = p x i + ρ Φ x i + τ i k x k , where τ i k = ρ ν ( u i x k + u k x i 2 3 u l x l δ i k ) {\displaystyle \rho {\frac {du_{i}}{dt}}=-{\frac {\partial p}{\partial x_{i}}}+\rho {\frac {\partial \Phi }{\partial x_{i}}}+{\frac {\partial \tau _{ik}}{\partial x_{k}}},\quad {\text{where}}\quad \tau _{ik}=\rho \nu \left({\frac {\partial u_{i}}{\partial x_{k}}}+{\frac {\partial u_{k}}{\partial x_{i}}}-{\frac {2}{3}}{\frac {\partial u_{l}}{\partial x_{l}}}\delta _{ik}\right)}

and we define the shear-energy tensor as

S i j = V τ i j d x . {\displaystyle S_{ij}=\int _{V}\tau _{ij}d\mathbf {x} .}

With the condition that the normal component of the total stress on the free surface must vanish, i.e., ( p δ i k + τ i k ) n k = 0 {\displaystyle (-p\delta _{ik}+\tau _{ik})n_{k}=0} , where n {\displaystyle \mathbf {n} } is the outward unit normal, the second order virial equation then be

1 2 d 2 I i j d t 2 = 2 T i j + W i j + δ i j Π S i j . {\displaystyle {\frac {1}{2}}{\frac {d^{2}I_{ij}}{dt^{2}}}=2T_{ij}+W_{ij}+\delta _{ij}\Pi -S_{ij}.}

This can be easily extended to rotating frame of references.

See also

References

  1. ^ Chandrasekhar, S; Lebovitz NR (1962). "The Potentials and the Superpotentials of Homogeneous Ellipsoids" (PDF). Ap. J. 136: 1037–1047. Bibcode:1962ApJ...136.1037C. doi:10.1086/147456. Retrieved March 24, 2012.
  2. ^ Chandrasekhar, S; Fermi E (1953). "Problems of Gravitational Stability in the Presence of a Magnetic Field" (PDF). Ap. J. 118: 116. Bibcode:1953ApJ...118..116C. doi:10.1086/145732. Retrieved March 24, 2012.
  3. ^ Chandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 9. New Haven: Yale University Press, 1969.
  4. ^ Chandrasekhar, S. (1968). The virial equations of the fourth order. The Astrophysical Journal, 152, 293. http://repository.ias.ac.in/74364/1/93-p-OCR.pdf