Cofunction

Sine and cosine are each other's cofunctions.

In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles (pairs that sum to one right angle).[1] This definition typically applies to trigonometric functions.[2][3] The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620).[4][5]

For example, sine (Latin: sinus) and cosine (Latin: cosinus,[4][5] sinus complementi[4][5]) are cofunctions of each other (hence the "co" in "cosine"):

sin ( π 2 A ) = cos ( A ) {\displaystyle \sin \left({\frac {\pi }{2}}-A\right)=\cos(A)} [1][3] cos ( π 2 A ) = sin ( A ) {\displaystyle \cos \left({\frac {\pi }{2}}-A\right)=\sin(A)} [1][3]

The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens,[4][5] tangens complementi[4][5]):

sec ( π 2 A ) = csc ( A ) {\displaystyle \sec \left({\frac {\pi }{2}}-A\right)=\csc(A)} [1][3] csc ( π 2 A ) = sec ( A ) {\displaystyle \csc \left({\frac {\pi }{2}}-A\right)=\sec(A)} [1][3]
tan ( π 2 A ) = cot ( A ) {\displaystyle \tan \left({\frac {\pi }{2}}-A\right)=\cot(A)} [1][3] cot ( π 2 A ) = tan ( A ) {\displaystyle \cot \left({\frac {\pi }{2}}-A\right)=\tan(A)} [1][3]

These equations are also known as the cofunction identities.[2][3]

This also holds true for the versine (versed sine, ver) and coversine (coversed sine, cvs), the vercosine (versed cosine, vcs) and covercosine (coversed cosine, cvc), the haversine (half-versed sine, hav) and hacoversine (half-coversed sine, hcv), the havercosine (half-versed cosine, hvc) and hacovercosine (half-coversed cosine, hcc), as well as the exsecant (external secant, exs) and excosecant (external cosecant, exc):

ver ( π 2 A ) = cvs ( A ) {\displaystyle \operatorname {ver} \left({\frac {\pi }{2}}-A\right)=\operatorname {cvs} (A)} [6] cvs ( π 2 A ) = ver ( A ) {\displaystyle \operatorname {cvs} \left({\frac {\pi }{2}}-A\right)=\operatorname {ver} (A)}
vcs ( π 2 A ) = cvc ( A ) {\displaystyle \operatorname {vcs} \left({\frac {\pi }{2}}-A\right)=\operatorname {cvc} (A)} [7] cvc ( π 2 A ) = vcs ( A ) {\displaystyle \operatorname {cvc} \left({\frac {\pi }{2}}-A\right)=\operatorname {vcs} (A)}
hav ( π 2 A ) = hcv ( A ) {\displaystyle \operatorname {hav} \left({\frac {\pi }{2}}-A\right)=\operatorname {hcv} (A)} hcv ( π 2 A ) = hav ( A ) {\displaystyle \operatorname {hcv} \left({\frac {\pi }{2}}-A\right)=\operatorname {hav} (A)}
hvc ( π 2 A ) = hcc ( A ) {\displaystyle \operatorname {hvc} \left({\frac {\pi }{2}}-A\right)=\operatorname {hcc} (A)} hcc ( π 2 A ) = hvc ( A ) {\displaystyle \operatorname {hcc} \left({\frac {\pi }{2}}-A\right)=\operatorname {hvc} (A)}
exs ( π 2 A ) = exc ( A ) {\displaystyle \operatorname {exs} \left({\frac {\pi }{2}}-A\right)=\operatorname {exc} (A)} exc ( π 2 A ) = exs ( A ) {\displaystyle \operatorname {exc} \left({\frac {\pi }{2}}-A\right)=\operatorname {exs} (A)}

See also

References

  1. ^ a b c d e f g Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12.
  2. ^ a b Aufmann, Richard; Nation, Richard (2014). Algebra and Trigonometry (8 ed.). Cengage Learning. p. 528. ISBN 978-128596583-3. Retrieved 2017-07-28.
  3. ^ a b c d e f g h Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30.
  4. ^ a b c d e Gunter, Edmund (1620). Canon triangulorum.
  5. ^ a b c d e Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28.
  6. ^ Weisstein, Eric Wolfgang. "Coversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-11-27. Retrieved 2015-11-06.
  7. ^ Weisstein, Eric Wolfgang. "Covercosine". MathWorld. Wolfram Research, Inc. Archived from the original on 2014-03-28. Retrieved 2015-11-06.