De Rham invariant

Mod 2 invariant of (4k+1)-dimensional manifold

In geometric topology, the de Rham invariant is a mod 2 invariant of a (4k+1)-dimensional manifold, that is, an element of Z / 2 {\displaystyle \mathbf {Z} /2} – either 0 or 1. It can be thought of as the simply-connected symmetric L-group L 4 k + 1 , {\displaystyle L^{4k+1},} and thus analogous to the other invariants from L-theory: the signature, a 4k-dimensional invariant (either symmetric or quadratic, L 4 k L 4 k {\displaystyle L^{4k}\cong L_{4k}} ), and the Kervaire invariant, a (4k+2)-dimensional quadratic invariant L 4 k + 2 . {\displaystyle L_{4k+2}.}

It is named for Swiss mathematician Georges de Rham, and used in surgery theory.[1][2]

Definition

The de Rham invariant of a (4k+1)-dimensional manifold can be defined in various equivalent ways:[3]

  • the rank of the 2-torsion in H 2 k ( M ) , {\displaystyle H_{2k}(M),} as an integer mod 2;
  • the Stiefel–Whitney number w 2 w 4 k 1 {\displaystyle w_{2}w_{4k-1}} ;
  • the (squared) Wu number, v 2 k S q 1 v 2 k , {\displaystyle v_{2k}Sq^{1}v_{2k},} where v 2 k H 2 k ( M ; Z 2 ) {\displaystyle v_{2k}\in H^{2k}(M;Z_{2})} is the Wu class of the normal bundle of M {\displaystyle M} and S q 1 {\displaystyle Sq^{1}} is the Steenrod square; formally, as with all characteristic numbers, this is evaluated on the fundamental class: ( v 2 k S q 1 v 2 k , [ M ] ) {\displaystyle (v_{2k}Sq^{1}v_{2k},[M])} ;
  • in terms of a semicharacteristic.

References

  1. ^ Morgan, John W; Sullivan, Dennis P. (1974), "The transversality characteristic class and linking cycles in surgery theory", Annals of Mathematics, 2, 99 (3): 463–544, doi:10.2307/1971060, JSTOR 1971060, MR 0350748
  2. ^ John W. Morgan, A product formula for surgery obstructions, 1978
  3. ^ (Lusztig, Milnor & Peterson 1969)
  • Lusztig, George; Milnor, John; Peterson, Franklin P. (1969), "Semi-characteristics and cobordism", Topology, 8 (4): 357–360, doi:10.1016/0040-9383(69)90021-4, MR 0246308
  • Chess, Daniel, A Poincaré-Hopf type theorem for the de Rham invariant, 1980