Determinantal point process

In mathematics, a determinantal point process is a stochastic point process, the probability distribution of which is characterized as a determinant of some function. Such processes arise as important tools in random matrix theory, combinatorics, physics,[1] machine learning,[2] and wireless network modeling.[3][4][5]

Definition

Let Λ {\displaystyle \Lambda } be a locally compact Polish space and μ {\displaystyle \mu } be a Radon measure on Λ {\displaystyle \Lambda } . Also, consider a measurable function K : Λ 2 C {\displaystyle K:\Lambda ^{2}\to \mathbb {C} } .

We say that X {\displaystyle X} is a determinantal point process on Λ {\displaystyle \Lambda } with kernel K {\displaystyle K} if it is a simple point process on Λ {\displaystyle \Lambda } with a joint intensity or correlation function (which is the density of its factorial moment measure) given by

ρ n ( x 1 , , x n ) = det [ K ( x i , x j ) ] 1 i , j n {\displaystyle \rho _{n}(x_{1},\ldots ,x_{n})=\det[K(x_{i},x_{j})]_{1\leq i,j\leq n}}

for every n ≥ 1 and x1, ..., xn ∈ Λ.[6]

Properties

Existence

The following two conditions are necessary and sufficient for the existence of a determinantal random point process with intensities ρk.

  • Symmetry: ρk is invariant under action of the symmetric group Sk. Thus: ρ k ( x σ ( 1 ) , , x σ ( k ) ) = ρ k ( x 1 , , x k ) σ S k , k {\displaystyle \rho _{k}(x_{\sigma (1)},\ldots ,x_{\sigma (k)})=\rho _{k}(x_{1},\ldots ,x_{k})\quad \forall \sigma \in S_{k},k}
  • Positivity: For any N, and any collection of measurable, bounded functions φ k : Λ k R {\displaystyle \varphi _{k}:\Lambda ^{k}\to \mathbb {R} } , k = 1, ..., N with compact support:
    If φ 0 + k = 1 N i 1 i k φ k ( x i 1 x i k ) 0  for all  k , ( x i ) i = 1 k {\displaystyle \varphi _{0}+\sum _{k=1}^{N}\sum _{i_{1}\neq \cdots \neq i_{k}}\varphi _{k}(x_{i_{1}}\ldots x_{i_{k}})\geq 0{\text{ for all }}k,(x_{i})_{i=1}^{k}} Then [7] φ 0 + k = 1 N Λ k φ k ( x 1 , , x k ) ρ k ( x 1 , , x k ) d x 1 d x k 0  for all  k , ( x i ) i = 1 k {\displaystyle \varphi _{0}+\sum _{k=1}^{N}\int _{\Lambda ^{k}}\varphi _{k}(x_{1},\ldots ,x_{k})\rho _{k}(x_{1},\ldots ,x_{k})\,{\textrm {d}}x_{1}\cdots {\textrm {d}}x_{k}\geq 0{\text{ for all }}k,(x_{i})_{i=1}^{k}}

Uniqueness

A sufficient condition for the uniqueness of a determinantal random process with joint intensities ρk is k = 0 ( 1 k ! A k ρ k ( x 1 , , x k ) d x 1 d x k ) 1 k = {\displaystyle \sum _{k=0}^{\infty }\left({\frac {1}{k!}}\int _{A^{k}}\rho _{k}(x_{1},\ldots ,x_{k})\,{\textrm {d}}x_{1}\cdots {\textrm {d}}x_{k}\right)^{-{\frac {1}{k}}}=\infty } for every bounded Borel A ⊆ Λ.[7]

Examples

Gaussian unitary ensemble

The eigenvalues of a random m × m Hermitian matrix drawn from the Gaussian unitary ensemble (GUE) form a determinantal point process on R {\displaystyle \mathbb {R} } with kernel

K m ( x , y ) = k = 0 m 1 ψ k ( x ) ψ k ( y ) {\displaystyle K_{m}(x,y)=\sum _{k=0}^{m-1}\psi _{k}(x)\psi _{k}(y)}

where ψ k ( x ) {\displaystyle \psi _{k}(x)} is the k {\displaystyle k} th oscillator wave function defined by

ψ k ( x ) = 1 2 n n ! H k ( x ) e x 2 / 4 {\displaystyle \psi _{k}(x)={\frac {1}{\sqrt {{\sqrt {2n}}n!}}}H_{k}(x)e^{-x^{2}/4}}

and H k ( x ) {\displaystyle H_{k}(x)} is the k {\displaystyle k} th Hermite polynomial. [8]

Poissonized Plancherel measure

The poissonized Plancherel measure on integer partition (and therefore on Young diagramss) plays an important role in the study of the longest increasing subsequence of a random permutation. The point process corresponding to a random Young diagram, expressed in modified Frobenius coordinates, is a determinantal point process on Z {\displaystyle \mathbb {Z} } + 12 with the discrete Bessel kernel, given by:

K ( x , y ) = { θ k + ( | x | , | y | ) | x | | y | if  x y > 0 , θ k ( | x | , | y | ) x y if  x y < 0 , {\displaystyle K(x,y)={\begin{cases}{\sqrt {\theta }}\,{\dfrac {k_{+}(|x|,|y|)}{|x|-|y|}}&{\text{if }}xy>0,\\[12pt]{\sqrt {\theta }}\,{\dfrac {k_{-}(|x|,|y|)}{x-y}}&{\text{if }}xy<0,\end{cases}}} where k + ( x , y ) = J x 1 2 ( 2 θ ) J y + 1 2 ( 2 θ ) J x + 1 2 ( 2 θ ) J y 1 2 ( 2 θ ) , {\displaystyle k_{+}(x,y)=J_{x-{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y+{\frac {1}{2}}}(2{\sqrt {\theta }})-J_{x+{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y-{\frac {1}{2}}}(2{\sqrt {\theta }}),} k ( x , y ) = J x 1 2 ( 2 θ ) J y 1 2 ( 2 θ ) + J x + 1 2 ( 2 θ ) J y + 1 2 ( 2 θ ) {\displaystyle k_{-}(x,y)=J_{x-{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y-{\frac {1}{2}}}(2{\sqrt {\theta }})+J_{x+{\frac {1}{2}}}(2{\sqrt {\theta }})J_{y+{\frac {1}{2}}}(2{\sqrt {\theta }})} For J the Bessel function of the first kind, and θ the mean used in poissonization.[9]

This serves as an example of a well-defined determinantal point process with non-Hermitian kernel (although its restriction to the positive and negative semi-axis is Hermitian).[7]

Uniform spanning trees

Let G be a finite, undirected, connected graph, with edge set E. Define Ie:E → 2(E) as follows: first choose some arbitrary set of orientations for the edges E, and for each resulting, oriented edge e, define Ie to be the projection of a unit flow along e onto the subspace of 2(E) spanned by star flows.[10] Then the uniformly random spanning tree of G is a determinantal point process on E, with kernel

K ( e , f ) = I e , I f , e , f E {\displaystyle K(e,f)=\langle I^{e},I^{f}\rangle ,\quad e,f\in E} .[6]

References

  1. ^ Vershik, Anatoly M. (2003). Asymptotic combinatorics with applications to mathematical physics a European mathematical summer school held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001. Berlin [etc.]: Springer. p. 151. ISBN 978-3-540-44890-7.
  2. ^ Kulesza, Alex; Taskar, Ben (2012). "Determinantal Point Processes for Machine Learning". Foundations and Trends in Machine Learning. 5 (2–3): 123–286. arXiv:1207.6083. doi:10.1561/2200000044.
  3. ^ Miyoshi, Naoto; Shirai, Tomoyuki (2016). "A Cellular Network Model with Ginibre Configured Base Stations". Advances in Applied Probability. 46 (3): 832–845. doi:10.1239/aap/1409319562. ISSN 0001-8678.
  4. ^ Torrisi, Giovanni Luca; Leonardi, Emilio (2014). "Large Deviations of the Interference in the Ginibre Network Model" (PDF). Stochastic Systems. 4 (1): 173–205. doi:10.1287/13-SSY109. ISSN 1946-5238.
  5. ^ N. Deng, W. Zhou, and M. Haenggi. The Ginibre point process as a model for wireless networks with repulsion. IEEE Transactions on Wireless Communications, vol. 14, pp. 107-121, Jan. 2015.
  6. ^ a b Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B., Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009.
  7. ^ a b c A. Soshnikov, Determinantal random point fields. Russian Math. Surveys, 2000, 55 (5), 923–975.
  8. ^ B. Valko. Random matrices, lectures 14–15. Course lecture notes, University of Wisconsin-Madison.
  9. ^ A. Borodin, A. Okounkov, and G. Olshanski, On asymptotics of Plancherel measures for symmetric groups, available via arXiv:math/9905032.
  10. ^ Lyons, R. with Peres, Y., Probability on Trees and Networks. Cambridge University Press, In preparation. Current version available at http://mypage.iu.edu/~rdlyons/