Diamagnetic inequality

Mathematical inequality relating the derivative of a function to its covariant derivative

In mathematics and physics, the diamagnetic inequality relates the Sobolev norm of the absolute value of a section of a line bundle to its covariant derivative. The diamagnetic inequality has an important physical interpretation, that a charged particle in a magnetic field has more energy in its ground state than it would in a vacuum.[1][2]

To precisely state the inequality, let L 2 ( R n ) {\displaystyle L^{2}(\mathbb {R} ^{n})} denote the usual Hilbert space of square-integrable functions, and H 1 ( R n ) {\displaystyle H^{1}(\mathbb {R} ^{n})} the Sobolev space of square-integrable functions with square-integrable derivatives. Let f , A 1 , , A n {\displaystyle f,A_{1},\dots ,A_{n}} be measurable functions on R n {\displaystyle \mathbb {R} ^{n}} and suppose that A j L loc 2 ( R n ) {\displaystyle A_{j}\in L_{\text{loc}}^{2}(\mathbb {R} ^{n})} is real-valued, f {\displaystyle f} is complex-valued, and f , ( 1 + i A 1 ) f , , ( n + i A n ) f L 2 ( R n ) {\displaystyle f,(\partial _{1}+iA_{1})f,\dots ,(\partial _{n}+iA_{n})f\in L^{2}(\mathbb {R} ^{n})} . Then for almost every x R n {\displaystyle x\in \mathbb {R} ^{n}} , | | f | ( x ) | | ( + i A ) f ( x ) | . {\displaystyle |\nabla |f|(x)|\leq |(\nabla +iA)f(x)|.} In particular, | f | H 1 ( R n ) {\displaystyle |f|\in H^{1}(\mathbb {R} ^{n})} .

Proof

For this proof we follow Elliott H. Lieb and Michael Loss.[1] From the assumptions, j | f | L loc 1 ( R n ) {\displaystyle \partial _{j}|f|\in L_{\text{loc}}^{1}(\mathbb {R} ^{n})} when viewed in the sense of distributions and j | f | ( x ) = Re ( f ¯ ( x ) | f ( x ) | j f ( x ) ) {\displaystyle \partial _{j}|f|(x)=\operatorname {Re} \left({\frac {{\overline {f}}(x)}{|f(x)|}}\partial _{j}f(x)\right)} for almost every x {\displaystyle x} such that f ( x ) 0 {\displaystyle f(x)\neq 0} (and j | f | ( x ) = 0 {\displaystyle \partial _{j}|f|(x)=0} if f ( x ) = 0 {\displaystyle f(x)=0} ). Moreover, Re ( f ¯ ( x ) | f ( x ) | i A j f ( x ) ) = Im ( A j f ) = 0. {\displaystyle \operatorname {Re} \left({\frac {{\overline {f}}(x)}{|f(x)|}}iA_{j}f(x)\right)=\operatorname {Im} (A_{j}f)=0.} So | f | ( x ) = Re ( f ¯ ( x ) | f ( x ) | D f ( x ) ) | f ¯ ( x ) | f ( x ) | D f ( x ) | = | D f ( x ) | {\displaystyle \nabla |f|(x)=\operatorname {Re} \left({\frac {{\overline {f}}(x)}{|f(x)|}}\mathbf {D} f(x)\right)\leq \left|{\frac {{\overline {f}}(x)}{|f(x)|}}\mathbf {D} f(x)\right|=|\mathbf {D} f(x)|} for almost every x {\displaystyle x} such that f ( x ) 0 {\displaystyle f(x)\neq 0} . The case that f ( x ) = 0 {\displaystyle f(x)=0} is similar.

Application to line bundles

Let p : L R n {\displaystyle p:L\to \mathbb {R} ^{n}} be a U(1) line bundle, and let A {\displaystyle A} be a connection 1-form for L {\displaystyle L} . In this situation, A {\displaystyle A} is real-valued, and the covariant derivative D {\displaystyle \mathbf {D} } satisfies D f j = ( j + i A j ) f {\displaystyle \mathbf {D} f_{j}=(\partial _{j}+iA_{j})f} for every section f {\displaystyle f} . Here j {\displaystyle \partial _{j}} are the components of the trivial connection for L {\displaystyle L} . If A j L loc 2 ( R n ) {\displaystyle A_{j}\in L_{\text{loc}}^{2}(\mathbb {R} ^{n})} and f , ( 1 + i A 1 ) f , , ( n + i A n ) f L 2 ( R n ) {\displaystyle f,(\partial _{1}+iA_{1})f,\dots ,(\partial _{n}+iA_{n})f\in L^{2}(\mathbb {R} ^{n})} , then for almost every x R n {\displaystyle x\in \mathbb {R} ^{n}} , it follows from the diamagnetic inequality that | | f | ( x ) | | D f ( x ) | . {\displaystyle |\nabla |f|(x)|\leq |\mathbf {D} f(x)|.}

The above case is of the most physical interest. We view R n {\displaystyle \mathbb {R} ^{n}} as Minkowski spacetime. Since the gauge group of electromagnetism is U ( 1 ) {\displaystyle U(1)} , connection 1-forms for L {\displaystyle L} are nothing more than the valid electromagnetic four-potentials on R n {\displaystyle \mathbb {R} ^{n}} . If F = d A {\displaystyle F=dA} is the electromagnetic tensor, then the massless MaxwellKlein–Gordon system for a section ϕ {\displaystyle \phi } of L {\displaystyle L} are { μ F μ ν = Im ( ϕ D ν ϕ ) D μ D μ ϕ = 0 {\displaystyle {\begin{cases}\partial ^{\mu }F_{\mu \nu }=\operatorname {Im} (\phi \mathbf {D} _{\nu }\phi )\\\mathbf {D} ^{\mu }\mathbf {D} _{\mu }\phi =0\end{cases}}} and the energy of this physical system is | | F ( t ) | | L x 2 2 2 + | | D ϕ ( t ) | | L x 2 2 2 . {\displaystyle {\frac {||F(t)||_{L_{x}^{2}}^{2}}{2}}+{\frac {||\mathbf {D} \phi (t)||_{L_{x}^{2}}^{2}}{2}}.} The diamagnetic inequality guarantees that the energy is minimized in the absence of electromagnetism, thus A = 0 {\displaystyle A=0} .[3]

See also

Citations

  1. ^ a b Lieb, Elliott; Loss, Michael (2001). Analysis. Providence: American Mathematical Society. ISBN 9780821827833.
  2. ^ Hiroshima, Fumio (1996). "Diamagnetic inequalities for systems of nonrelativistic particles with a quantized field". Reviews in Mathematical Physics. 8 (2): 185–203. Bibcode:1996RvMaP...8..185H. doi:10.1142/S0129055X9600007X. hdl:2115/69048. MR 1383577. S2CID 115703186. Retrieved November 25, 2021.
  3. ^ Oh, Sung-Jin; Tataru, Daniel (2016). "Local well-posedness of the (4+1)-dimensional Maxwell-Klein-Gordon equation". Annals of PDE. 2 (1). arXiv:1503.01560. doi:10.1007/s40818-016-0006-4. S2CID 116975954.