Eckert-Greifendorff projection

Map projection by Max Eckert-Greifendorff

The Eckert-Greifendorff projection is an equal-area map projection described by Max Eckert-Greifendorff in 1935. Unlike his previous six projections, it is not pseudocylindrical.

Development

Directly inspired by the Hammer projection, Eckert-Greifendorff suggested the use of the equatorial form of the Lambert azimuthal equal-area projection instead of Aitoff's use of the azimuthal equidistant projection:

x = 2 laea x ( λ 4 , φ ) y = 1 2 laea y ( λ 4 , φ ) {\displaystyle {\begin{aligned}x&=2\operatorname {laea} _{x}\left({\frac {\lambda }{4}},\varphi \right)\\y&={\tfrac {1}{2}}\operatorname {laea} _{y}\left({\frac {\lambda }{4}},\varphi \right)\end{aligned}}}

where laeax and laeay are the x and y components of the equatorial Lambert azimuthal equal-area projection. Written out explicitly:

x = 4 2 cos φ sin λ 4 1 + cos φ cos λ 4 y = 2 sin φ 1 + cos φ cos λ 4 {\displaystyle {\begin{aligned}x&={\frac {4{\sqrt {2}}\cos \varphi \sin {\frac {\lambda }{4}}}{\sqrt {1+\cos \varphi \cos {\frac {\lambda }{4}}}}}\\y&={\frac {{\sqrt {2}}\sin \varphi }{\sqrt {1+\cos \varphi \cos {\frac {\lambda }{4}}}}}\end{aligned}}}

The inverse is calculated with the intermediate variable

z 1 ( 1 16 x ) 2 ( 1 2 y ) 2 {\displaystyle z\equiv {\sqrt {1-\left({\tfrac {1}{16}}x\right)^{2}-\left({\tfrac {1}{2}}y\right)^{2}}}}

The longitude and latitudes can then be calculated by

λ = 4 arctan z x 4 ( 2 z 2 1 ) φ = arcsin z y {\displaystyle {\begin{aligned}\lambda &=4\arctan {\frac {zx}{4\left(2z^{2}-1\right)}}\\\varphi &=\arcsin zy\end{aligned}}}

where λ is the longitude from the central meridian and φ is the latitude.[1][2]

See also

References

  1. ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 130–133, ISBN 0-226-76747-7.
  2. ^ Weisstein, Eric W. "Hammer–Aitoff Equal-Area Projection." From MathWorld—A Wolfram Web Resource
  • v
  • t
  • e
Map projection
Cylindrical
Mercator-conformal
Equal-area
Pseudocylindrical
Equal-area
Conical
Pseudoconical
Azimuthal
(planar)
General perspective
Pseudoazimuthal
Conformal
Equal-area
Bonne
Bottomley
Cylindrical
Tobler hyperelliptical
Equidistant in
some aspect
Gnomonic
Loxodromic
Retroazimuthal
(Mecca or Qibla)
Compromise
Hybrid
Perspective
Planar
Polyhedral
See also