Erdős–Moser equation

Diophantine equation 1ᵏ + 2ᵏ + … + (m – 1)ᵏ = mᵏ
Unsolved problem in mathematics:
Does the Erdős–Moser equation have solutions other than 11+21=31?

In number theory, the Erdős–Moser equation is

1 k + 2 k + + ( m 1 ) k = m k , {\displaystyle 1^{k}+2^{k}+\cdots +(m-1)^{k}=m^{k},}

where m and k are restricted to the positive integers—that is, it is considered as a Diophantine equation. The only known solution is 11 + 21 = 31, and Paul Erdős conjectured that no further solutions exist. Any further solutions must have m > 10109.[1]

Some care must be taken when comparing research papers on this equation, because some articles[2] express it in the form 1k + 2k + ⋯ + mk = (m + 1)k instead.

Throughout this article, p refers exclusively to prime numbers.

Constraints on solutions

In 1953, Leo Moser proved that, in any further solutions,[3]

  1. k is even,
  2. p | (m − 1) implies (p − 1) | k,
  3. p | (m + 1) implies (p − 1) | k,
  4. p | (2m + 1) implies (p − 1) | k,
  5. m − 1 is squarefree,
  6. m + 1 is either squarefree or 4 times an odd squarefree number,
  7. 2m − 1 is squarefree,
  8. 2m + 1 is squarefree,
  9. p | ( m 1 ) m 1 p 1 ( mod m 1 ) , {\displaystyle \sum _{p|(m-1)}{\frac {m-1}{p}}\equiv -1{\pmod {m-1}},}
  10. p | ( m + 1 ) m + 1 p 2 ( mod m + 1 ) (if  m + 1  is even) , {\displaystyle \sum _{p|(m+1)}{\frac {m+1}{p}}\equiv -2{\pmod {m+1}}\quad {\text{(if }}m+1{\text{ is even)}},}
  11. p | ( 2 m 1 ) 2 m 1 p 2 ( mod 2 m 1 ) , {\displaystyle \sum _{p|(2m-1)}{\frac {2m-1}{p}}\equiv -2{\pmod {2m-1}},}
  12. p | ( 2 m + 1 ) 2 m + 1 p 4 ( mod 2 m + 1 ) , {\displaystyle \sum _{p|(2m+1)}{\frac {2m+1}{p}}\equiv -4{\pmod {2m+1}},} and
  13. m > 10106.

In 1966, it was additionally shown that[2]

  1. 6 ≤ k + 2 < m < 3 (k + 1) / 2, and
  2. m – 1 cannot be prime.

In 1994, it was shown that[4]

  1. lcm(1,2,…,200) divides k,
  2. m ≡ 3 (mod 2ord2(k) + 3), where ord2(n) is the 2-adic valuation of n; equivalently, ord2(m − 3) = ord2(k) + 3,
  3. for any odd prime p divding m, we have k ≢ 0, 2 (mod p − 1),
  4. any prime factor of m must be irregular and > 10000.

In 1999, Moser's method was refined to show that m > 1.485 × 109,321,155.[5]

In 2002, it was shown[6]: §4  that k must be a multiple of 23 · 3# · 5# · 7# · 19# · 1000#, where the symbol # indicates the primorial; that is, n# is the product of all prime numbers n. This number exceeds 5.7462 × 10427.

In 2009, it was shown that 2k / (2m – 3) must be a convergent of ln(2); in what the authors of that paper call "one of very few instances where a large scale computation of a numerical constant has an application", it was then determined that m > 2.7139 × 101,667,658,416.[1]

In 2010, it was shown that[7]

  1. m ≡ 3 (mod 8) and m ≡ ±1 (mod 3), and
  2. (m2 – 1) (4m2 – 1) / 12 has at least 4,990,906 prime factors, none of which are repeated.

The number 4,990,906 arises from the fact that 4990905
n=1
1/pn < 19/6 < 4990906
n=1
1/pn,
where pn is the nth prime number.

Moser's method

First, let p be a prime factor of m − 1. Leo Moser showed[3] that this implies that p − 1 divides k and that

1 + m 1 p 0 ( mod p ) , {\displaystyle 1+{\frac {m-1}{p}}\equiv 0{\pmod {p}},}
(1)

which upon multiplying by p yields

p + m 1 0 ( mod p 2 ) . {\displaystyle p+m-1\equiv 0{\pmod {p^{2}}}.}

This in turn implies that m − 1 must be squarefree. Furthermore, since nontrivial solutions have m − 1 > 2 and since all squarefree numbers in this range must have at least one odd prime factor, the assumption that p − 1 divides k implies that k must be even.

One congruence of the form (1) exists for each prime factor p of m − 1. Multiplying all of them together yields

p | ( m 1 ) ( 1 + m 1 p ) 0 ( mod m 1 ) . {\displaystyle \prod _{p|(m-1)}\left(1+{\frac {m-1}{p}}\right)\equiv 0{\pmod {m-1}}.}

Expanding out the product yields

1 + p | ( m 1 ) m 1 p + ( higher-order terms ) 0 ( mod m 1 ) , {\displaystyle 1+\sum _{p|(m-1)}{\frac {m-1}{p}}+({\text{higher-order terms}})\equiv 0{\pmod {m-1}},}

where the higher-order terms are products of multiple factors of the form (m − 1) / p, with different values of p in each factor. These terms are all divisible by m − 1, so they all drop out of the congruence, yielding

1 + p | ( m 1 ) m 1 p 0 ( mod m 1 ) . {\displaystyle 1+\sum _{p|(m-1)}{\frac {m-1}{p}}\equiv 0{\pmod {m-1}}.}

Dividing out the modulus yields

1 m 1 + p | ( m 1 ) 1 p 0 ( mod 1 ) . {\displaystyle {\frac {1}{m-1}}+\sum _{p|(m-1)}{\frac {1}{p}}\equiv 0{\pmod {1}}.}
(2)

Similar reasoning yields the congruences

2 m + 1 + p | ( m + 1 ) 1 p 0 ( mod 1 ) (if  m + 1  is even) , {\displaystyle {\frac {2}{m+1}}+\sum _{p|(m+1)}{\frac {1}{p}}\equiv 0{\pmod {1}}\quad {\text{(if }}m+1{\text{ is even)}},}
(3)
2 2 m 1 + p | ( 2 m 1 ) 1 p 0 ( mod 1 ) , and {\displaystyle {\frac {2}{2m-1}}+\sum _{p|(2m-1)}{\frac {1}{p}}\equiv 0{\pmod {1}},\quad {\text{and}}}
(4)
4 2 m + 1 + p | ( 2 m + 1 ) 1 p 0 ( mod 1 ) . {\displaystyle {\frac {4}{2m+1}}+\sum _{p|(2m+1)}{\frac {1}{p}}\equiv 0{\pmod {1}}.}
(5)

The congruences (2), (3), (4), and (5) are quite restrictive; for example, the only values of m < 1000 which satisfy (2) are 3, 7, and 43, and these are ruled out by (4).

We now split into two cases: either m + 1 is even, or it is odd.

In the case that m + 1 is even, adding the left-hand sides of the congruences (2), (3), (4), and (5) must yield an integer, and this integer must be at least 4. Furthermore, the Euclidean algorithm shows that no prime p > 3 can divide more than one of the numbers in the set {m − 1, m + 1, 2m − 1, 2m + 1}, and that 2 and 3 can divide at most two of these numbers. Letting M = (m − 1) (m + 1) (2m − 1) (2m + 1), we then have

1 m 1 + 2 m + 1 + 2 2 m 1 + 4 2 m + 1 + p | M 1 p 4 1 2 1 3 = 3.1666.... {\displaystyle {\frac {1}{m-1}}+{\frac {2}{m+1}}+{\frac {2}{2m-1}}+{\frac {4}{2m+1}}+\sum _{p|M}{\frac {1}{p}}\geq 4-{\frac {1}{2}}-{\frac {1}{3}}=3.1666....}
(6)

Since there are no nontrivial solutions with m < 1000, the part of the LHS of (6) outside the sigma cannot exceed 0.006; we therefore have

p | M 1 p > 3.16. {\displaystyle \sum _{p|M}{\frac {1}{p}}>3.16.}

Therefore, if p x 1 p < 3.16 {\displaystyle \sum _{p\leq x}{\frac {1}{p}}<3.16} , then M > p x p {\displaystyle M>\prod _{p\leq x}p} . In Moser's original paper,[3] bounds on the prime-counting function are used to observe that

p 10 7 1 p < 3.16. {\displaystyle \sum _{p\leq 10^{7}}{\frac {1}{p}}<3.16.}

Therefore, M must exceed the product of the first 10,000,000 primes. This in turn implies that m > 10106 in this case.

In the case that m + 1 is odd, we cannot use (3), so instead of (6) we obtain

1 m 1 + 2 2 m 1 + 4 2 m + 1 + p | N 1 p 3 1 3 = 2.666... , {\displaystyle {\frac {1}{m-1}}+{\frac {2}{2m-1}}+{\frac {4}{2m+1}}+\sum _{p|N}{\frac {1}{p}}\geq 3-{\frac {1}{3}}=2.666...,}

where N = (m − 1) (2m − 1) (2m + 1). On the surface, this appears to be a weaker condition than (6), but since m + 1 is odd, the prime 2 cannot appear on the greater side of this inequality, and it turns out to be a stronger restriction on m than the other case.

Therefore any nontrivial solutions have m > 10106.

In 1999, this method was refined by using computers to replace the prime-counting estimates with exact computations; this yielded the bound m > 1.485 × 109,321,155.[5]: Thm 2 

Bounding the ratio m / (k + 1)

Let Sk(m) = 1k + 2k + ⋯ + (m – 1)k. Then the Erdős–Moser equation becomes Sk(m) = mk.

Method 1: Integral comparisons

By comparing the sum Sk(m) to definite integrals of the function xk, one can obtain the bounds 1 < m / (k + 1) < 3.[1]: §1¶2 

The sum Sk(m) = 1k + 2k + ⋯ + (m – 1)k is the upper Riemann sum corresponding to the integral 0 m 1 x k d x {\textstyle \int _{0}^{m-1}x^{k}\,\mathrm {d} x} in which the interval has been partitioned on the integer values of x, so we have

S k ( m ) > 0 m 1 x k d x . {\displaystyle S_{k}(m)>\int _{0}^{m-1}x^{k}\;\mathrm {d} x.}

By hypothesis, Sk(m) = mk, so

m k > ( m 1 ) k + 1 k + 1 , {\displaystyle m^{k}>{\frac {(m-1)^{k+1}}{k+1}},}

which leads to

m k + 1 < ( 1 + 1 m 1 ) k + 1 . {\displaystyle {\frac {m}{k+1}}<\left(1+{\frac {1}{m-1}}\right)^{k+1}.}
(7)

Similarly, Sk(m) is the lower Riemann sum corresponding to the integral 1 m x k d x {\textstyle \int _{1}^{m}x^{k}\,\mathrm {d} x} in which the interval has been partitioned on the integer values of x, so we have

S k ( m ) 1 m x k d x . {\displaystyle S_{k}(m)\leq \int _{1}^{m}x^{k}\;\mathrm {d} x.}

By hypothesis, Sk(m) = mk, so

m k m k + 1 1 k + 1 < m k + 1 k + 1 , {\displaystyle m^{k}\leq {\frac {m^{k+1}-1}{k+1}}<{\frac {m^{k+1}}{k+1}},}

and so

k + 1 < m . {\displaystyle k+1<m.}
(8)

Applying this to (7) yields

m k + 1 < ( 1 + 1 m 1 ) m = ( 1 + 1 m 1 ) m 1 ( m m 1 ) < e m m 1 . {\displaystyle {\frac {m}{k+1}}<\left(1+{\frac {1}{m-1}}\right)^{m}=\left(1+{\frac {1}{m-1}}\right)^{m-1}\cdot \left({\frac {m}{m-1}}\right)<e\cdot {\frac {m}{m-1}}.}

Computation shows that there are no nontrivial solutions with m ≤ 10, so we have

m k + 1 < e 11 11 1 < 3. {\displaystyle {\frac {m}{k+1}}<e\cdot {\frac {11}{11-1}}<3.}

Combining this with (8) yields 1 < m / (k + 1) < 3, as desired.

Method 2: Algebraic manipulations

The upper bound m / (k + 1) < 3 can be reduced to m / (k + 1) < 3/2 using an algebraic method:[2]: Lemat 4 

Let r be a positive integer. Then the binomial theorem yields

( + 1 ) r + 1 = i = 0 r + 1 ( r + 1 i ) r + 1 i . {\displaystyle (\ell +1)^{r+1}=\sum _{i=0}^{r+1}{\binom {r+1}{i}}\ell ^{r+1-i}.}

Summing over yields

= 1 m 1 ( + 1 ) r + 1 = = 1 m 1 ( i = 0 r + 1 ( r + 1 i ) r + 1 i ) . {\displaystyle \sum _{\ell =1}^{m-1}(\ell +1)^{r+1}=\sum _{\ell =1}^{m-1}\left(\sum _{i=0}^{r+1}{\binom {r+1}{i}}\ell ^{r+1-i}\right).}

Reindexing on the left and rearranging on the right yields

= 2 m r + 1 = i = 0 r + 1 ( r + 1 i ) = 1 m 1 r + 1 i {\displaystyle \sum _{\ell =2}^{m}\ell ^{r+1}=\sum _{i=0}^{r+1}{\binom {r+1}{i}}\sum _{\ell =1}^{m-1}\ell ^{r+1-i}}
= 1 m r + 1 = 1 + i = 0 r + 1 ( r + 1 i ) S r + 1 i ( m ) {\displaystyle \sum _{\ell =1}^{m}\ell ^{r+1}=1+\sum _{i=0}^{r+1}{\binom {r+1}{i}}S_{r+1-i}(m)}
S r + 1 ( m + 1 ) S r + 1 ( m ) = 1 + ( r + 1 ) S r ( m ) + i = 2 r + 1 ( r + 1 i ) S r + 1 i ( m ) {\displaystyle S_{r+1}(m+1)-S_{r+1}(m)=1+(r+1)S_{r}(m)+\sum _{i=2}^{r+1}{\binom {r+1}{i}}S_{r+1-i}(m)}
m r + 1 = 1 + ( r + 1 ) S r ( m ) + i = 2 r + 1 ( r + 1 i ) S r + 1 i ( m ) . {\displaystyle m^{r+1}=1+(r+1)S_{r}(m)+\sum _{i=2}^{r+1}{\binom {r+1}{i}}S_{r+1-i}(m).}
(9)

Taking r = k yields

m k + 1 = 1 + ( k + 1 ) S k ( m ) + i = 2 k + 1 ( k + 1 i ) S k + 1 i ( m ) . {\displaystyle m^{k+1}=1+(k+1)S_{k}(m)+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m).}

By hypothesis, Sk = mk, so

m k + 1 = 1 + ( k + 1 ) m k + i = 2 k + 1 ( k + 1 i ) S k + 1 i ( m ) {\displaystyle m^{k+1}=1+(k+1)m^{k}+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m)}
m k ( m ( k + 1 ) ) = 1 + i = 2 k + 1 ( k + 1 i ) S k + 1 i ( m ) . {\displaystyle m^{k}(m-(k+1))=1+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m).}
(10)

Since the RHS is positive, we must therefore have

k + 1 < m . {\displaystyle k+1<m.}
(11)

Returning to (9) and taking r = k − 1 yields

m k = 1 + k S k 1 ( m ) + i = 2 k ( k i ) S k i ( m ) {\displaystyle m^{k}=1+k\cdot S_{k-1}(m)+\sum _{i=2}^{k}{\binom {k}{i}}S_{k-i}(m)}
m k = 1 + s = 1 k ( k s ) S k s ( m ) . {\displaystyle m^{k}=1+\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m).}

Substituting this into (10) to eliminate mk yields

( 1 + s = 1 k ( k s ) S k s ( m ) ) ( m ( k + 1 ) ) = 1 + i = 2 k + 1 ( k + 1 i ) S k + 1 i ( m ) . {\displaystyle \left(1+\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m)\right)(m-(k+1))=1+\sum _{i=2}^{k+1}{\binom {k+1}{i}}S_{k+1-i}(m).}

Reindexing the sum on the right with the substitution i = s + 1 yields

( 1 + s = 1 k ( k s ) S k s ( m ) ) ( m ( k + 1 ) ) = 1 + s = 1 k ( k + 1 s + 1 ) S k s ( m ) {\displaystyle \left(1+\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m)\right)(m-(k+1))=1+\sum _{s=1}^{k}{\binom {k+1}{s+1}}S_{k-s}(m)}
m ( k + 1 ) + ( m ( k + 1 ) ) s = 1 k ( k s ) S k s ( m ) = 1 + s = 1 k k + 1 s + 1 ( k s ) S k s ( m ) {\displaystyle m-(k+1)+(m-(k+1))\sum _{s=1}^{k}{\binom {k}{s}}S_{k-s}(m)=1+\sum _{s=1}^{k}{\frac {k+1}{s+1}}{\binom {k}{s}}S_{k-s}(m)}
m k 2 = s = 1 k ( k + 1 s + 1 m + ( k + 1 ) ) ( k s ) S k s ( m ) . {\displaystyle m-k-2=\sum _{s=1}^{k}\left({\frac {k+1}{s+1}}-m+(k+1)\right){\binom {k}{s}}S_{k-s}(m).}
(12)

We already know from (11) that k + 1 < m. This leaves open the possibility that m = k + 2; however, substituting this into (12) yields

0 = s = 1 k ( k + 1 s + 1 1 ) ( k s ) S k s ( k + 2 ) {\displaystyle 0=\sum _{s=1}^{k}\left({\frac {k+1}{s+1}}-1\right){\binom {k}{s}}S_{k-s}(k+2)}
0 = s = 1 k k s s + 1 ( k s ) S k s ( k + 2 ) {\displaystyle 0=\sum _{s=1}^{k}{\frac {k-s}{s+1}}{\binom {k}{s}}S_{k-s}(k+2)}
0 = k k k + 1 ( k k ) S k k ( k + 2 ) + s = 1 k 1 k s s + 1 ( k s ) S k s ( k + 2 ) {\displaystyle 0={\frac {k-k}{k+1}}{\binom {k}{k}}S_{k-k}(k+2)+\sum _{s=1}^{k-1}{\frac {k-s}{s+1}}{\binom {k}{s}}S_{k-s}(k+2)}
0 = 0 + s = 1 k 1 k s s + 1 ( k s ) S k s ( k + 2 ) , {\displaystyle 0=0+\sum _{s=1}^{k-1}{\frac {k-s}{s+1}}{\binom {k}{s}}S_{k-s}(k+2),}

which is impossible for k > 1, since the sum contains only positive terms. Therefore any nontrivial solutions must have mk + 2; combining this with (11) yields

k + 2 < m . {\displaystyle k+2<m.}

We therefore observe that the left-hand side of (12) is positive, so

0 < s = 1 k ( k + 1 s + 1 m + ( k + 1 ) ) ( k s ) S k s ( m ) . {\displaystyle 0<\sum _{s=1}^{k}\left({\frac {k+1}{s+1}}-m+(k+1)\right){\binom {k}{s}}S_{k-s}(m).}
(13)

Since k > 1, the sequence { ( k + 1 ) / ( s + 1 ) m + ( k + 1 ) } s = 1 {\displaystyle \left\{(k+1)/(s+1)-m+(k+1)\right\}_{s=1}^{\infty }} is decreasing. This and (13) together imply that its first term (the term with s = 1) must be positive: if it were not, then every term in the sum would be nonpositive, and therefore so would the sum itself. Thus,

0 < k + 1 1 + 1 m + ( k + 1 ) , {\displaystyle 0<{\frac {k+1}{1+1}}-m+(k+1),}

which yields

m < 3 2 ( k + 1 ) {\displaystyle m<{\frac {3}{2}}\cdot (k+1)}

and therefore

m k + 1 < 3 2 , {\displaystyle {\frac {m}{k+1}}<{\frac {3}{2}},}

as desired.

Continued fractions

Any potential solutions to the equation must arise from the continued fraction of the natural logarithm of 2: specifically, 2k / (2m − 3) must be a convergent of that number.[1]

By expanding the Taylor series of (1 − y)k eky about y = 0, one finds

( 1 y ) k = e k y ( 1 k 2 y 2 k 3 y 3 + k ( k 2 ) 8 y 4 + k ( 5 k 6 ) 30 y 5 + O ( y 6 ) ) as  y 0. {\displaystyle (1-y)^{k}=e^{-ky}\left(1-{\frac {k}{2}}y^{2}-{\frac {k}{3}}y^{3}+{\frac {k(k-2)}{8}}y^{4}+{\frac {k(5k-6)}{30}}y^{5}+O(y^{6})\right)\quad {\text{as }}y\rightarrow 0.}

More elaborate analysis sharpens this to

e k y ( 1 k 2 y 2 k 3 y 3 + k ( k 2 ) 8 y 4 + k ( 5 k 6 ) 30 y 5 k 3 6 y 6 ) < ( 1 y ) k < e k y ( 1 k 2 y 2 k 3 y 3 + k ( k 2 ) 8 y 4 + k 2 2 y 5 ) {\displaystyle {\begin{aligned}e^{-ky}\left(1-{\frac {k}{2}}y^{2}-{\frac {k}{3}}y^{3}+{\frac {k(k-2)}{8}}y^{4}+{\frac {k(5k-6)}{30}}y^{5}-{\frac {k^{3}}{6}}y^{6}\right)\\<(1-y)^{k}<e^{-ky}\left(1-{\frac {k}{2}}y^{2}-{\frac {k}{3}}y^{3}+{\frac {k(k-2)}{8}}y^{4}+{\frac {k^{2}}{2}}y^{5}\right)\end{aligned}}}
(14)

for k > 8 and 0 < y < 1.

The Erdős–Moser equation is equivalent to

1 = j = 1 m 1 ( 1 j m ) k . {\displaystyle 1=\sum _{j=1}^{m-1}\left(1-{\frac {j}{m}}\right)^{k}.}

Applying (14) to each term in this sum yields

T 0 k 2 m 2 T 2 k 3 m 3 T 3 + k ( k 2 ) 8 m 4 T 4 + k ( 5 k 6 ) 30 m 5 T 5 k 3 6 m 6 T 6 < j = 1 m 1 ( 1 j m ) k < T 0 k 2 m 2 T 2 k 3 m 3 T 3 + k ( k 2 ) 8 m 4 T 4 + k 2 2 m 5 T 5 , {\displaystyle {\begin{aligned}T_{0}-{\frac {k}{2m^{2}}}T_{2}-{\frac {k}{3m^{3}}}T_{3}+{\frac {k(k-2)}{8m^{4}}}T_{4}+{\frac {k(5k-6)}{30m^{5}}}T_{5}-{\frac {k^{3}}{6m^{6}}}T_{6}\qquad \qquad \\<\sum _{j=1}^{m-1}\left(1-{\frac {j}{m}}\right)^{k}<T_{0}-{\frac {k}{2m^{2}}}T_{2}-{\frac {k}{3m^{3}}}T_{3}+{\frac {k(k-2)}{8m^{4}}}T_{4}+{\frac {k^{2}}{2m^{5}}}T_{5},\end{aligned}}}

where T n = j = 1 m 1 j n z j {\displaystyle T_{n}=\sum _{j=1}^{m-1}j^{n}z^{j}} and z = ek/m. Further manipulation eventually yields

| 1 z 1 z + k 2 m 2 z 2 + z ( 1 z ) 3 + k 3 m 3 z 3 + 4 z 2 + z ( 1 z ) 4 k ( k 2 ) 8 m 4 z 4 + 11 z 3 + 11 z 2 + z ( 1 z ) 5 | < 110000 m 3 . {\displaystyle \left\vert 1-{\frac {z}{1-z}}+{\frac {k}{2m^{2}}}{\frac {z^{2}+z}{(1-z)^{3}}}+{\frac {k}{3m^{3}}}{\frac {z^{3}+4z^{2}+z}{(1-z)^{4}}}-{\frac {k(k-2)}{8m^{4}}}{\frac {z^{4}+11z^{3}+11z^{2}+z}{(1-z)^{5}}}\right\vert <{\frac {110000}{m^{3}}}.}
(15)

We already know that k/m is bounded as m → ∞; making the ansatz k/m = c + O(1/m), and therefore z = ec + O(1/m), and substituting it into (15) yields

1 1 e c 1 = O ( 1 m ) as  m ; {\displaystyle 1-{\frac {1}{e^{c}-1}}=O\left({\frac {1}{m}}\right)\quad {\text{as }}m\rightarrow \infty ;}

therefore c = ln(2). We therefore have

k m = ln ( 2 ) + a m + b m 2 + O ( 1 m 3 ) as  m , {\displaystyle {\frac {k}{m}}=\ln(2)+{\frac {a}{m}}+{\frac {b}{m^{2}}}+O\left({\frac {1}{m^{3}}}\right)\quad {\text{as }}m\rightarrow \infty ,}
(16)

and so

1 z = e k / m = 2 + 2 a m + a 2 + 2 b m 2 + O ( 1 m 3 ) as  m . {\displaystyle {\frac {1}{z}}=e^{k/m}=2+{\frac {2a}{m}}+{\frac {a^{2}+2b}{m^{2}}}+O\left({\frac {1}{m^{3}}}\right)\quad {\text{as }}m\rightarrow \infty .}

Substituting these formulas into (15) yields a = −3 ln(2) / 2 and b = (3 ln(2) − 25/12) ln(2). Putting these into (16) yields

k m = ln ( 2 ) ( 1 3 2 m 25 12 3 ln ( 2 ) m 2 + O ( 1 m 3 ) ) as  m . {\displaystyle {\frac {k}{m}}=\ln(2)\left(1-{\frac {3}{2m}}-{\frac {{\frac {25}{12}}-3\ln(2)}{m^{2}}}+O\left({\frac {1}{m^{3}}}\right)\right)\quad {\text{as }}m\rightarrow \infty .}

The term O(1/m3) must be bounded effectively. To that end, we define the function

F ( x , λ ) = ( 1 1 t 1 + x λ 2 t + t 2 ( t 1 ) 3 + x 2 λ 3 t + 4 t 2 + t 3 ( t 1 ) 4 x 2 λ ( λ 2 x ) 8 t + 11 t 2 + 11 t 3 + t 4 ( t 1 ) 5 ) | t = e λ . {\displaystyle F(x,\lambda )=\left.\left(1-{\frac {1}{t-1}}+{\frac {x\lambda }{2}}{\frac {t+t^{2}}{(t-1)^{3}}}+{\frac {x^{2}\lambda }{3}}{\frac {t+4t^{2}+t^{3}}{(t-1)^{4}}}-{\frac {x^{2}\lambda (\lambda -2x)}{8}}{\frac {t+11t^{2}+11t^{3}+t^{4}}{(t-1)^{5}}}\right)\right\vert _{t=e^{\lambda }}.}

The inequality (15) then takes the form

| F ( 1 m , k m ) | < 110000 m 3 , {\displaystyle \left\vert F\left({\frac {1}{m}},{\frac {k}{m}}\right)\right\vert <{\frac {110000}{m^{3}}},}
(17)

and we further have

F ( x , ln ( 2 ) ( 1 3 2 x 0.004 x 2 ) ) > 0.005 15 x 2 100 x 3 and F ( x , ln ( 2 ) ( 1 3 2 x 0.004 x 2 ) ) < 0.00015 x 2 + 100 x 3 {\displaystyle {\begin{aligned}F(x,\ln(2)(1-{\tfrac {3}{2}}x\,{\phantom {-\;0.004x^{2}}}))&>{\phantom {-}}0.005{\phantom {15}}x^{2}-100x^{3}\quad {\text{and}}\\F(x,\ln(2)(1-{\tfrac {3}{2}}x-0.004x^{2}))&<-0.00015x^{2}+100x^{3}\end{aligned}}}

for x ≤ 0.01. Therefore

F ( 1 m , ln ( 2 ) ( 1 3 2 m 0.004 m 2 ) ) > 110000 m 3 for  m > 2202 10 4 and F ( 1 m , ln ( 2 ) ( 1 3 2 m 0.004 m 2 ) ) < 110000 m 3 for  m > 0 734 10 6 . {\displaystyle {\begin{aligned}F\left({\frac {1}{m}},\ln(2)\left(1-{\frac {3}{2m}}\,{\phantom {\;-{\frac {0.004}{m^{2}}}}}\right)\right)&>{\phantom {-}}{\frac {110000}{m^{3}}}\quad {\text{for }}m>2202\cdot 10^{4}\quad {\text{and}}\\F\left({\frac {1}{m}},\ln(2)\left(1-{\frac {3}{2m}}-{\frac {0.004}{m^{2}}}\right)\right)&<-{\frac {110000}{m^{3}}}\quad {\text{for }}m>{\phantom {0}}734\cdot 10^{6}.\end{aligned}}}

Comparing these with (17) then shows that, for m > 109, we have

ln ( 2 ) ( 1 3 2 m 0.004 m 2 ) < k m < ln ( 2 ) ( 1 3 2 m ) , {\displaystyle \ln(2)\left(1-{\frac {3}{2m}}-{\frac {0.004}{m^{2}}}\right)<{\frac {k}{m}}<\ln(2)\left(1-{\frac {3}{2m}}\right),}

and therefore

0 < ln ( 2 ) 2 k 2 m 3 < 0.0111 ( 2 m 3 ) 2 . {\displaystyle 0<\ln(2)-{\frac {2k}{2m-3}}<{\frac {0.0111}{(2m-3)^{2}}}.}

Recalling that Moser showed[3] that indeed m > 109, and then invoking Legendre's theorem on continued fractions, finally proves that 2k / (2m – 3) must be a convergent to ln(2). Leveraging this result, 31 billion decimal digits of ln(2) can be used to exclude any nontrivial solutions below 10109.[1]

See also

  • iconMathematics portal

References

  1. ^ a b c d e Gallot, Yves; Moree, Pieter; Zudilin, Wadim (2010). "The Erdős–Moser Equation 1k + 2k + ⋯ + (m – 1)k = mk Revisited Using Continued Fractions" (PDF). Mathematics of Computation. 80: 1221–1237. arXiv:0907.1356. doi:10.1090/S0025-5718-2010-02439-1. S2CID 16305654. Archived from the original on 2024-05-08. Retrieved 2017-03-20.
  2. ^ a b c Krzysztofek, Bronisław (1966). "O Rówaniu 1n + ... + mn = (m + 1)n·k" (PDF). Zeszyty Naukowe Wyżsej Szkoły Pedagogicznej w Katowicach—Sekcja Matematyki (in Polish). 5: 47–54. Archived from the original (PDF) on 2024-05-13. Retrieved 2024-05-13.
  3. ^ a b c d Moser, Leo (1953). "On the Diophantine Equation 1k + 2k + ... + (m – 1)k = mk". Scripta Mathematica. 19: 84–88.
  4. ^ Moree, Pieter; te Riele, Herman; Urbanowicz, Jerzy (1994). "Divisibility Properties of Integers x, k Satisfying 1k + 2k + ⋯ + (x – 1)k = xk" (PDF). Mathematics of Computation. 63: 799–815. doi:10.1090/s0025-5718-1994-1257577-1. Archived from the original on 2024-05-08. Retrieved 2017-03-20.
  5. ^ a b Butske, William; Jaje, Lynda M.; Mayernik, Daniel R. (1999). "The Equation Σp|N 1/p + 1/N = 1, Pseudoperfect Numbers, and Partially Weighted Graphs" (PDF). Mathematics of Computation. 69: 407–420. doi:10.1090/s0025-5718-99-01088-1. Archived from the original on 2024-05-08. Retrieved 2017-03-20.
  6. ^ Kellner, Bernd Christian (2002). Über irreguläre Paare höherer Ordnungen (PDF) (Thesis) (in German). University of Göttingen. Archived from the original (PDF) on 2024-03-12. Retrieved 2024-03-12.
  7. ^ Moree, Pieter (2013-10-01). "Moser's mathemagical work on the equation 1k + 2k + ⋯ + (m – 1)k = mk". Rocky Mountain Journal of Mathematics. 43 (5): 1707–1737. arXiv:1011.2940. doi:10.1216/RMJ-2013-43-5-1707. ISSN 0035-7596.