Gödel operation

In mathematical set theory, a set of Gödel operations is a finite collection of operations on sets that can be used to construct the constructible sets from ordinals. Gödel (1940) introduced the original set of 8 Gödel operations 𝔉1,...,𝔉8 under the name fundamental operations. Other authors sometimes use a slightly different set of about 8 to 10 operations, usually denoted G1, G2,...

Definition

Gödel (1940) used the following eight operations as a set of Gödel operations (which he called fundamental operations):

  1. F 1 ( X , Y ) = { X , Y } {\displaystyle {\mathfrak {F}}_{1}(X,Y)=\{X,Y\}}
  2. F 2 ( X , Y ) = E X = { ( a , b ) X a b } {\displaystyle {\mathfrak {F}}_{2}(X,Y)=E\cdot X=\{(a,b)\in X\mid a\in b\}}
  3. F 3 ( X , Y ) = X Y {\displaystyle {\mathfrak {F}}_{3}(X,Y)=X-Y}
  4. F 4 ( X , Y ) = X Y = X ( V × Y ) = { ( a , b ) X b Y } {\displaystyle {\mathfrak {F}}_{4}(X,Y)=X\upharpoonright Y=X\cdot (V\times Y)=\{(a,b)\in X\mid b\in Y\}}
  5. F 5 ( X , Y ) = X D ( Y ) = { b X a ( a , b ) Y } {\displaystyle {\mathfrak {F}}_{5}(X,Y)=X\cdot {\mathfrak {D}}(Y)=\{b\in X\mid \exists a(a,b)\in Y\}}
  6. F 6 ( X , Y ) = X Y 1 = { ( a , b ) X ( b , a ) Y } {\displaystyle {\mathfrak {F}}_{6}(X,Y)=X\cdot Y^{-1}=\{(a,b)\in X\mid (b,a)\in Y\}}
  7. F 7 ( X , Y ) = X C n v 2 ( Y ) = { ( a , b , c ) X ( a , c , b ) Y } {\displaystyle {\mathfrak {F}}_{7}(X,Y)=X\cdot {\mathfrak {Cnv}}_{2}(Y)=\{(a,b,c)\in X\mid (a,c,b)\in Y\}}
  8. F 8 ( X , Y ) = X C n v 3 ( Y ) = { ( a , b , c ) X ( c , a , b ) Y } {\displaystyle {\mathfrak {F}}_{8}(X,Y)=X\cdot {\mathfrak {Cnv}}_{3}(Y)=\{(a,b,c)\in X\mid (c,a,b)\in Y\}}

The second expression in each line gives Gödel's definition in his original notation, where the dot means intersection, V is the universe, E is the membership relation, D {\displaystyle {\mathfrak {D}}} denotes range and so on. (Here the symbol {\displaystyle \upharpoonright } is used to restrict range, unlike the contemporary meaning of restriction.)

Jech (2003) uses the following set of 10 Gödel operations.

  1. G 1 ( X , Y ) = { X , Y } {\displaystyle G_{1}(X,Y)=\{X,Y\}}
  2. G 2 ( X , Y ) = X × Y {\displaystyle G_{2}(X,Y)=X\times Y}
  3. G 3 ( X , Y ) = { ( x , y ) x X , y Y , x y } {\displaystyle G_{3}(X,Y)=\{(x,y)\mid x\in X,y\in Y,x\in y\}}
  4. G 4 ( X , Y ) = X Y {\displaystyle G_{4}(X,Y)=X-Y}
  5. G 5 ( X , Y ) = X Y {\displaystyle G_{5}(X,Y)=X\cap Y}
  6. G 6 ( X ) = X {\displaystyle G_{6}(X)=\cup X}
  7. G 7 ( X ) = dom ( X ) {\displaystyle G_{7}(X)={\text{dom}}(X)}
  8. G 8 ( X ) = { ( x , y ) ( y , x ) X } {\displaystyle G_{8}(X)=\{(x,y)\mid (y,x)\in X\}}
  9. G 9 ( X ) = { ( x , y , z ) ( x , z , y ) X } {\displaystyle G_{9}(X)=\{(x,y,z)\mid (x,z,y)\in X\}}
  10. G 10 ( X ) = { ( x , y , z ) ( y , z , x ) X } {\displaystyle G_{10}(X)=\{(x,y,z)\mid (y,z,x)\in X\}}

Properties

Gödel's normal form theorem states that if φ(x1,...xn) is a formula in the language of set theory with all quantifiers bounded, then the function {(x1,...,xn) ∈ X1×...×Xn | φ(x1, ..., xn)) of X1, ..., Xn is given by a composition of some Gödel operations. This result is closely related to Jensen's rudimentary functions.[1]

References

  • Gödel, Kurt (1940). The Consistency of the Continuum Hypothesis. Annals of Mathematics Studies. Vol. 3. Princeton, N. J.: Princeton University Press. ISBN 978-0-691-07927-1. MR 0002514.
  • Jech, Thomas (2003), Set Theory: Millennium Edition, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-44085-7

Inline references

  1. ^ K. Devlin, An introduction to the fine structure of the constructible hierarchy (1974, p.11). Accessed 2022-02-26.