Grothendieck trace theorem

Extension of Lidskii's theorem

In functional analysis, the Grothendieck trace theorem is an extension of Lidskii's theorem about the trace and the determinant of a certain class of nuclear operators on Banach spaces, the so-called 2 3 {\displaystyle {\tfrac {2}{3}}} -nuclear operators.[1] The theorem was proven in 1955 by Alexander Grothendieck.[2] Lidskii's theorem does not hold in general for Banach spaces.

The theorem should not be confused with the Grothendieck trace formula from algebraic geometry.

Grothendieck trace theorem

Given a Banach space ( B , ) {\displaystyle (B,\|\cdot \|)} with the approximation property and denote its dual as B {\displaystyle B'} .

⅔-nuclear operators

Let A {\displaystyle A} be a nuclear operator on B {\displaystyle B} , then A {\displaystyle A} is a 2 3 {\displaystyle {\tfrac {2}{3}}} -nuclear operator if it has a decomposition of the form A = k = 1 φ k f k {\displaystyle A=\sum \limits _{k=1}^{\infty }\varphi _{k}\otimes f_{k}} where φ k B {\displaystyle \varphi _{k}\in B} and f k B {\displaystyle f_{k}\in B'} and k = 1 φ k 2 / 3 f k 2 / 3 < . {\displaystyle \sum \limits _{k=1}^{\infty }\|\varphi _{k}\|^{2/3}\|f_{k}\|^{2/3}<\infty .}

Grothendieck's trace theorem

Let λ j ( A ) {\displaystyle \lambda _{j}(A)} denote the eigenvalues of a 2 3 {\displaystyle {\tfrac {2}{3}}} -nuclear operator A {\displaystyle A} counted with their algebraic multiplicities. If j | λ j ( A ) | < {\displaystyle \sum \limits _{j}|\lambda _{j}(A)|<\infty } then the following equalities hold: tr A = j | λ j ( A ) | {\displaystyle \operatorname {tr} A=\sum \limits _{j}|\lambda _{j}(A)|} and for the Fredholm determinant det ( I + A ) = j ( 1 + λ j ( A ) ) . {\displaystyle \operatorname {det} (I+A)=\prod \limits _{j}(1+\lambda _{j}(A)).}

See also

Literature

  • Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum (1991). Traces and Determinants of Linear Operators. Operator Theory Advances and Applications. Basel: Birkhäuser. p. 102. ISBN 978-3-7643-6177-8.

References

  1. ^ Gohberg, Israel; Goldberg, Seymour; Krupnik, Nahum (1991). Traces and Determinants of Linear Operators. Operator Theory Advances and Applications. Basel: Birkhäuser. p. 102. ISBN 978-3-7643-6177-8.
  2. ^ * Grothendieck, Alexander (1955). Produits tensoriels topologiques et espaces nucléaires (in French). Providence: American Mathematical Society. p. 19. ISBN 0-8218-1216-5. OCLC 1315788.
  • v
  • t
  • e
Topological tensor products and nuclear spaces
Basic concepts
  • Auxiliary normed spaces
  • Nuclear space
  • Tensor product
  • Topological tensor product
TopologiesOperators/MapsTheorems
  • v
  • t
  • e
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category