Helffer–Sjöstrand formula

This is a mathematical page on the Helffer-Sjoestrand formula.

In mathematics, more specifically, in functional analysis, the Helffer–Sjöstrand formula is a formula for computing a function of a self-adjoint operator.

Background

If f C 0 ( R ) {\displaystyle f\in C_{0}^{\infty }(\mathbb {R} )} , then we can find a function f ~ C 0 ( C ) {\displaystyle {\tilde {f}}\in C_{0}^{\infty }(\mathbb {C} )} such that f ~ | R = f {\displaystyle {\tilde {f}}|_{\mathbb {R} }=f} , and for each N 0 {\displaystyle N\geq 0} , there exists a C N > 0 {\displaystyle C_{N}>0} such that

| ¯ f ~ | C N | Im z | N . {\displaystyle |{\bar {\partial }}{\tilde {f}}|\leq C_{N}|\operatorname {Im} z|^{N}.}

Such a function f ~ {\displaystyle {\tilde {f}}} is called an almost analytic extension of f {\displaystyle f} .[1]

The Formula

If f C 0 ( R ) {\displaystyle f\in C_{0}^{\infty }(\mathbb {R} )} and A {\displaystyle A} is a self-adjoint operator on a Hilbert space, then

f ( A ) = 1 π C ¯ f ~ ( z ) ( z A ) 1 d x d y {\displaystyle f(A)={\frac {1}{\pi }}\int _{\mathbb {C} }{\bar {\partial }}{\tilde {f}}(z)(z-A)^{-1}\,dx\,dy} [2]

where f ~ {\displaystyle {\tilde {f}}} is an almost analytic extension of f {\displaystyle f} , and ¯ z := 1 2 ( R e ( z ) + i I m ( z ) ) {\displaystyle {\bar {\partial }}_{z}:={\frac {1}{2}}(\partial _{Re(z)}+i\partial _{Im(z)})} .

See also

References

  1. ^ Dimassi, M., & Sjöstrand, J. (1999). Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series (268). Cambridge University Press. Chapter 8. ISBN 9780511662195.
  2. ^ Hörmander, L. (1983). The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Springer Verlag. Theorem 3.1.11. ISBN 9783540123274.
  • Lecture notes on Weyl's law

Further reading

  • Spectral Measures: Helffer-Sjöstrand