Infinite-order pentagonal tiling

Infinite-order pentagonal tiling
Infinite-order pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 5
Schläfli symbol {5,∞}
Wythoff symbol ∞ | 5 2
Coxeter diagram
Symmetry group [∞,5], (*∞52)
Dual Order-5 apeirogonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Symmetry

There is a half symmetry form, , seen with alternating colors:

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).

Finite Compact hyperbolic
  • v
  • t
  • e
Paracompact

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}...

{5,∞}
Paracompact uniform apeirogonal/pentagonal tilings
  • v
  • t
  • e
Symmetry: [∞,5], (*∞52) [∞,5]+
(∞52)
[1+,∞,5]
(*∞55)
[∞,5+]
(5*∞)
{∞,5} t{∞,5} r{∞,5} 2t{∞,5}=t{5,∞} 2r{∞,5}={5,∞} rr{∞,5} tr{∞,5} sr{∞,5} h{∞,5} h2{∞,5} s{5,∞}
Uniform duals
V∞5 V5.∞.∞ V5.∞.5.∞ V∞.10.10 V5 V4.5.4.∞ V4.10.∞ V3.3.5.3.∞ V(∞.5)5 V3.5.3.5.3.∞

See also

Wikimedia Commons has media related to Infinite-order pentagonal tiling.

References

  • John H. Conway; Heidi Burgiel; Chaim Goodman-Strauss (2008). "Chapter 19, The Hyperbolic Archimedean Tessellations". The Symmetries of Things. ISBN 978-1-56881-220-5.
  • H. S. M. Coxeter (1999). "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. ISBN 0-486-40919-8. LCCN 99035678.
  • v
  • t
  • e


Other
Spherical
  • 2n
  • 33.n
  • V33.n
  • 42.n
  • V42.n
Regular
  • 2
  • 36
  • 44
  • 63
Semi-
regular
  • 32.4.3.4
  • V32.4.3.4
  • 33.42
  • 33.∞
  • 34.6
  • V34.6
  • 3.4.6.4
  • (3.6)2
  • 3.122
  • 42.∞
  • 4.6.12
  • 4.82
Hyper-
bolic