Ionic Coulomb blockade

Electrostatic phenomenon

Ionic Coulomb blockade (ICB)[1][2] is an electrostatic phenomenon predicted by M. Krems and Massimiliano Di Ventra (UC San Diego)[1] that appears in ionic transport through mesoscopic electro-diffusive systems (artificial nanopores[1][3] and biological ion channels[2]) and manifests itself as oscillatory dependences of the conductance on the fixed charge Q f {\displaystyle Q_{\rm {f}}} in the pore[2] ( or on the external voltage V {\displaystyle V} , or on the bulk concentration c b {\displaystyle c_{\rm {b}}} [1]).

ICB represents an ion-related counterpart of the better-known electronic Coulomb blockade (ECB) that is observed in quantum dots.[4][5] Both ICB and ECB arise from quantisation of the electric charge and from an electrostatic exclusion principle and they share in common a number of effects and underlying physical mechanisms. ICB provides some specific effects related to the existence of ions of different charge q = z e {\displaystyle q=ze} (different in both sign and value) where integer z {\displaystyle z} is ion valence and e {\displaystyle e} is the elementary charge, in contrast to the single-valence electrons of ECB ( z = 1 {\displaystyle z=-1} ).

ICB effects appear in tiny pores whose self-capacitance C s {\displaystyle C_{\rm {s}}} is so small that the charging energy of a single ion Δ E = z 2 e 2 / ( 2 C s ) {\displaystyle \Delta E=z^{2}e^{2}/(2C_{s})} becomes large compared to the thermal energy per particle ( Δ E k B T {\displaystyle \Delta E\gg k_{\rm {B}}T} ). In such cases there is strong quantisation of the energy spectrum inside the pore, and the system may either be “blockaded” against the transportation of ions or, in the opposite extreme, it may show resonant barrier-less conduction,[6][2] depending on the free energy bias coming from Q f {\displaystyle Q_{\rm {f}}} , V {\displaystyle V} , or log c b {\displaystyle \log {c_{\rm {b}}}} .

The ICB model claims that Q f {\displaystyle Q_{\rm {f}}} is a primary determinant of conduction and selectivity for particular ions, and the predicted oscillations in conductance and an associated Coulomb staircase of channel occupancy vs Q f {\displaystyle Q_{\rm {f}}} [2] are expected to be strong effects in the cases of divalent ions ( z = 2 {\displaystyle z=2} ) or trivalent ions ( z = 3 {\displaystyle z=3} ).

Some effects, now recognised as belonging to ICB, were discovered and considered earlier in precursor papers on electrostatics-governed conduction mechanisms in channels and nanopores.[7][8][9][10][11]

The manifestations of ICB have been observed in water-filled sub-nanometre pores through a 2D MoS 2 {\displaystyle {\ce {MoS2}}} monolayer,[3] revealed by Brownian dynamics (BD) simulations of calcium conductance bands in narrow channels,[2][12] and account for a diversity of effects seen in biological ion channels.[2] ICB predictions have also been confirmed by a mutation study of divalent blockade in the NaChBac bacterial channel.[13]

Model

Generic electrostatic model of channel/nanopore

Fig. 1. Generic electrostatic and Brownian dynamics model of a channel or nanopore

ICB effects may be derived on the basis of a simplified electrostatics/Brownian dynamics model of a nanopore or of the selectivity filter of an ion channel.[8] The model represents the channel/pore as a charged hole through a water-filled protein hub embedded in the membrane. Its fixed charge Q f {\displaystyle Q_{\rm {f}}} is considered as a uniform, centrally placed, rigid ring (Fig.1). The channel is assumed to have geometrical parameters length L 1 {\displaystyle L\approx 1} nm and radius R 0.3 0.5 {\displaystyle R\approx 0.3-0.5} nm, allowing for the single-file movement of partially hydrated ions.

The model represents the water and protein as continuous media with dielectric constants ε w = 80 {\displaystyle \varepsilon _{\rm {w}}=80} and ε p = 2 10 {\displaystyle \varepsilon _{\rm {p}}=2-10} respectively. The mobile ions are described as discrete entities with valence z {\displaystyle z} and of radius R i o n {\displaystyle R_{\rm {ion}}} , moving stochastically through the pore, governed by the self-consistently coupled Poisson's electrostatic equation and Langevin stochastic equation.

The model is applicable to both cationic[9] and anionic[14] biological ion channels and to artificial nanopores.[1][3]

Electrostatics

The  mobile ion is assumed to be partially hydrated  (typically retaining its first hydration shell[15]) and carrying charge q = z e {\displaystyle q=ze} where e {\displaystyle e} is the elementary charge (e.g. the Ca 2 + {\displaystyle {\text{Ca}}^{2+}} ion with z = 2 {\displaystyle z=2} ). The model allows one to derive the pore and ion parameters satisfying the barrier-less permeation conditions, and to do so from basic electrostatics taking account of charge quantisation.

The potential energy E n {\displaystyle E_{n}} of a channel/pore containing n {\displaystyle n} ions can be decomposed into electrostatic energy[1][2][8] E n E S {\displaystyle E_{n}^{\rm {ES}}} , dehydration energy,[15] E n D H {\displaystyle E_{n}^{\rm {DH}}} and ion-ion local interaction energy E n I N T {\displaystyle E_{n}^{\rm {INT}}} : E n = E n E S + E n D H + E n I N T . . . ( E n  Decomposition ) {\displaystyle E_{n}=E_{n}^{\rm {ES}}+E_{n}^{\rm {DH}}+E_{n}^{\rm {INT}}...(E_{n}{\text{ Decomposition}})} The basic ICB model makes the simplifying approximation that E n = E n E S {\displaystyle E_{n}=E_{n}^{ES}} , whence: Q n = z e n + Q f (Excess charge) E n = Q n 2 2 C s (Electrostatic energy) C s = 4 π ϵ 0 ϵ w R 2 L (Self-capacitance) {\displaystyle {\begin{aligned}Q_{n}&=zen+Q_{\rm {f}}&{\text{(Excess charge)}}\\E_{n}&={\dfrac {Q_{n}^{2}}{2C_{s}}}&{\text{(Electrostatic energy)}}\\C_{s}&=4\pi \epsilon _{0}\epsilon _{w}{\dfrac {R^{2}}{L}}&{\text{(Self-capacitance)}}\end{aligned}}} where Q n {\displaystyle Q_{n}} is the net charge of the pore when it contains n {\displaystyle n} identical ions of valence z {\displaystyle z} , the sign of the moving ions being opposite to that of the Q f {\displaystyle Q_{\rm {f}}} , C s {\displaystyle C_{\rm {s}}} represents the electrostatic self-capacitance of the pore, and ϵ 0 {\displaystyle \epsilon _{0}} is the electric permittivity of the vacuum.

Resonant barrier-less conduction

Fig.2. Resonant barrier-less conduction of Ca 2 + {\displaystyle {\ce {Ca^{2+}}}} ions, with energies E {\displaystyle E} plotted vertically. (a) Plot of μ e x {\displaystyle \mu _{\rm {ex}}} as a function of fixed charge Q f / e {\displaystyle Q_{\rm {f}}/e} and position x {\displaystyle x} in the channel. At the "resonant" value of Q f / e = 1 {\displaystyle Q_{\rm {f}}/e=1} the transition is almost barrier-less (red cross-section). (b) Plots of Δ E {\displaystyle \Delta E} (blue curve) and E A F F {\displaystyle E_{\rm {AFF}}} (dashed-green) and their sum μ e x {\displaystyle \mu _{\rm {ex}}} (red) against x {\displaystyle x} for Q f / e = 1 {\displaystyle Q_{\rm {f}}/e=1} , showing that barrier-less conduction originates in a near-cancellation between Δ E {\displaystyle \Delta E} and E A F F {\displaystyle E_{\rm {AFF}}} .

Thermodynamics and statistical mechanics describe systems that have variable numbers of particles via the chemical potential μ {\displaystyle \mu } , defined as Gibbs free energy G {\displaystyle G} per particle:[16][17] G n = E n T S n (Gibbs free energy) μ n = G n + 1 G n (Chemical potential) {\displaystyle {\begin{aligned}G_{n}&=E_{n}-TS_{n}&{\text{(Gibbs free energy)}}\\\mu _{n}&=G_{n+1}-G_{n}&{\text{(Chemical potential)}}\end{aligned}}} , where G n {\displaystyle G_{n}} is the Gibbs free energy for the system of n {\displaystyle n} particles. In thermal and particle equilibrium with bulk reservoirs, the entire system has a common value of chemical potential μ = μ F {\displaystyle \mu =\mu _{F}} (the Fermi level in other contexts).[16] The free energy needed for the entry of a new ion to the channel is defined by the excess chemical potential μ e x = μ n μ F {\displaystyle \mu _{\rm {ex}}=\mu _{n}-\mu _{F}} [16] which (ignoring an entropy term ) can be written as μ e x = E n + 1 E n = Δ E + E A F F (Coulomb gap) Δ E = z 2 e 2 2 C s ; (Charging energy) E A F F = z e C s ( z e n + Q f ) (Affinity energy) {\displaystyle {\begin{aligned}\mu _{\rm {ex}}&=E_{n+1}-E_{n}=\Delta E+E_{\rm {AFF}}&{\text{(Coulomb gap)}}\\\Delta E&={\frac {z^{2}e^{2}}{2C_{s}}};&{\text{(Charging energy)}}\\E_{\rm {AFF}}&={\frac {ze}{C_{s}}}(zen+Q_{\rm {f}})&{\text{(Affinity energy)}}\end{aligned}}} where Δ E {\displaystyle \Delta E} is the charging energy (self-energy barrier) of an incoming ion and E A F F {\displaystyle E_{\rm {AFF}}} is its affinity (i.e. energy of attraction to the binding site Q f {\displaystyle Q_{\rm {f}}} ). The difference in energy between Δ E {\displaystyle \Delta E} and Δ E A F F {\displaystyle \Delta E_{\rm {AFF}}} (Fig.2.) defines the ionic energy level separation (Coulomb gap) and gives rise to most of the observed ICB effects.

In selective ion channels, the favoured ionic species passes through the channel almost at the rate of free diffusion, despite the strong affinity to the binding site. This conductivity-selectivity paradox has been explained as being a consequence of selective barrier-less conduction.[6][10][17][18] In the ICB model, this occurs when Δ E {\displaystyle \Delta E} is almost exactly balanced by E A F F {\displaystyle E_{\rm {AFF}}} ( μ e x 0 {\displaystyle \mu _{\rm {ex}}\approx 0} ), which happens for a particular value of Q f {\displaystyle Q_{\rm {f}}} (Fig.2.).[12] This resonant value of Q f {\displaystyle Q_{\rm {f}}} depends on the ionic properties z {\displaystyle z} and R i o n {\displaystyle R_{\rm {ion}}} (implicitly, via the R i o n {\displaystyle R_{\rm {ion}}} -dependent dehydration energy [6][15]), thereby providing a basis for selectivity.

Oscillations of conductance

Fig.3. Ionic Coulomb blockade illustrated by BD-simulations of Ca 2 + {\displaystyle ^{2+}} conduction, as the fixed charge Q f {\displaystyle Q_{\rm {f}}} is varied: (a) Ca 2 + {\displaystyle ^{2+}} conduction bands; (b) Ca 2 + {\displaystyle ^{2+}} occupancy, forming a Coulomb staircase; and (c) Ground state energy (red)

The ICB model explicitly predicts an oscillatory dependence of conduction on Q f {\displaystyle Q_{\rm {f}}} , with two interlaced sets of singularities associated with a sequentially increasing number of ions n = 1 , 2 , 3 , . . . {\displaystyle n=1,2,3,...} in the channel (Fig.3A).

Electrostatic blockade points Z n {\displaystyle Z_{n}} correspond to minima in the ground state energy of the pore (Fig.3C). E G ( Q f ) = min n E n ( Q f ) (Ground state ) {\displaystyle E_{\rm {G}}(Q_{\rm {f}})=\min _{n}{E_{n}(Q_{\rm {f}})}\quad \quad {\text{(Ground state}})} The Z n {\displaystyle Z_{n}} points ( E n / Q f = 0 {\displaystyle \partial E_{n}/\partial Q_{\rm {f}}=0} ) are equivalent to neutralisation points[12] where Q n = 0 {\displaystyle Q_{n}=0} .

Resonant conduction points M n {\displaystyle M_{n}} correspond to the barrier-less condition: μ e x = 0 {\textstyle \mu _{\rm {ex}}=0} , or Δ E E A F F {\displaystyle \Delta E\approx -E_{\rm {AFF}}} .

The values of Z n  and  M n {\displaystyle Z_{n}{\text{ and }}M_{n}} [2] are given by the simple formulae Z n = z e n (Electrostatic blockade) M n = z e ( n + 1 / 2 ) (Resonant conduction) , {\displaystyle {\begin{aligned}Z_{n}&=-zen&{\text{(Electrostatic blockade)}}\\M_{n}&=-ze(n+1/2)&{\text{(Resonant conduction)}},\end{aligned}}} i.e. the period of conductance oscillations in Q f {\displaystyle Q_{\rm {f}}} , Δ = | M n + 1 M n | = | Z n + 1 Z n | = | z e | {\displaystyle \Delta =|M_{n+1}-M_{n}|=|Z_{n+1}-Z_{n}|=|ze|} .

For z = 2 {\displaystyle z=2} , in a typical ion channel geometry, Δ E / ( k B T ) 20 1 {\displaystyle \Delta E/(k_{\rm {B}}T)\approx 20\gg 1} , and ICB becomes strong. Consequently, plots of the BD-simulated Ca 2 + {\displaystyle {\ce {Ca^2+}}} current J {\displaystyle J} vs Q f {\displaystyle Q_{\rm {f}}} exhibit multi-ion conduction bands - strong Coulomb blockade oscillations between minima Z n {\displaystyle Z_{n}} and maxima M n {\displaystyle M_{n}} (Fig.3A)).[12]

The point Z 0 = 0 {\displaystyle Z_{0}=0} corresponds to an uncharged pore with Q f = 0 {\displaystyle Q_{\rm {f}}=0} . Such pores are blockaded for ions of either sign.

Coulomb staircase

The ICB oscillations in conductance correspond to a Coulomb staircase in the pore occupancy P c {\displaystyle P_{\rm {c}}} , with transition regions corresponding to M n {\displaystyle M_{n}} and saturation regions corresponding to Z n {\displaystyle Z_{n}} (Fig.3B) . The shape of the staircase is described by the Fermi-Dirac (FD) distribution,[2] similarly to the Coulomb staircases of quantum dots.[5] Thus, for the 0 1 {\displaystyle 0\rightarrow 1} transition, the FD function is: P c = [ 1 + 1 P b exp ( μ e x k B T ) ] 1 ; (Fermi-Dirac distribution) μ e x = z e C s ( Q f M 0 ) . {\displaystyle {\begin{aligned}P_{\rm {c}}&=\left[1+{\dfrac {1}{P_{\rm {b}}}}\exp \left({\dfrac {\mu _{\rm {ex}}}{k_{\rm {B}}T}}\right)\right]^{-1};&{\text{(Fermi-Dirac distribution)}}\\\mu _{\rm {ex}}&={\frac {ze}{C_{s}}}\left(Q_{\rm {f}}-M_{0}\right).\end{aligned}}} Here μ e x {\displaystyle \mu _{\rm {ex}}} is the excess chemical potential for the particular ion and P b {\displaystyle P_{\rm {b}}} is an equivalent bulk occupancy related to pore volume. The saturated FD statistics of occupancy is equivalent to the Langmuir isotherm[19] or to Michaelis–Menten kinetics.[20]

It is the factor 1 / P b {\displaystyle 1/P_{\rm {b}}} that gives rise to the concentration-related shift in the staircase seen in Fig.3B.

Shift of singular points

Addition of the partial excess chemical potentials μ e x Y {\displaystyle \mu _{\rm {ex}}^{Y}} coming from different sources Y {\displaystyle Y} (including dehydration,[15] local binding,[21] volume exclusion etc.[9][17]) leads to the ICB barrier-less condition μ e x = 0 {\displaystyle \mu _{\rm {ex}}=0} leads to a proper shift in the ICB resonant points M n {\displaystyle M_{n}} , described by a "shift equation" :[22][21] Δ M n = C s z e Y μ e x Y (Shift equation) {\displaystyle \Delta M_{n}=-{\dfrac {C_{s}}{ze}}\sum _{Y}{\mu _{\rm {ex}}^{Y}}\quad \quad {\text{(Shift equation)}}} i.e. the additional energy contributions μ e x Y {\textstyle \mu _{\rm {ex}}^{Y}} lead to shifts in the resonant barrier-less point M 0 {\displaystyle M_{0}} .

The more important of these shifts (excess potentials) are:

  •  A concentration-related shift μ e x E S = k B T log ( P b ) {\displaystyle \mu _{\rm {ex}}^{\rm {ES}}=-k_{\rm {B}}T\log(P_{\rm {b}})} arising from the bulk entropy[17]
  •  A dehydration-related shift μ e x D H {\displaystyle \mu _{\rm {ex}}^{\rm {DH}}} , arising from partial dehydration penalty [15]
  • A local binding-related shift μ e x I N T {\displaystyle \mu _{\rm {ex}}^{\rm {INT}}} , coming from energy of local binding [21] and surface effects.[23]

In artificial nanopores

Sub-nm MoS2 pores

Following its prediction based on analytic theory[1][2] and molecular dynamics simulations, experimental evidence for ICB emerged from experiments[3] on monolayer MoS 2 {\displaystyle {\ce {MoS2}}} pierced by a single 0.6 {\displaystyle 0.6} nm nanopore. Highly non-Ohmic conduction was observed between aqueous ionic solutions on either side of the membrane. In particular, for low voltages across the membrane, the current remained close to zero, but it rose abruptly when a threshold of about 400 {\displaystyle 400} mV was exceeded. This was interpreted as complete ionic Coulomb blockade of current in the (uncharged) nanopore due to the large potential barrier at low voltages. But the application of larger voltages pulled the barrier down, producing accessible states into which transitions could occur, thus leading to conduction.

In biological ion channels

The realisation that ICB could occur in biological ion channels[2] accounted for several experimentally observed features of selectivity, including:

Valence selectivity

Valence selectivity is the channel's ability to discriminate between ions of different valence z {\displaystyle z} , wherein e.g. a calcium channel favours Ca 2 + {\displaystyle {\text{Ca}}^{2+}} ions over Na + {\displaystyle {\text{Na}}^{+}} ions by a factor of up to 1000×.[24] Valence selectivity has been attributed variously to pure electrostatics,[11] or to a charge space competition mechanism,[25] or to a snug fit of the ion to ligands,[26] or to quantised dehydration.[27] In the ICB model, valence selectivity arises from electrostatics, namely from z {\displaystyle z} -dependence of the value of Q f = M n = z e ( n + 1 / 2 ) {\displaystyle Q_{\rm {f}}=M_{n}=-ze(n+1/2)} needed to provide for barrier-less conduction.

Correspondingly, the ICB model provides explanations of why site-directed mutations that alter Q f {\displaystyle Q_{\rm {f}}} can destroy the channel by blockading it, or can alter its selectivity from favouring Ca 2 + {\displaystyle {\text{Ca}}^{2+}} ions to favouring Na + {\displaystyle {\text{Na}}^{+}} ions, or vice versa [28].

Divalent blockade

Divalent (e.g. Ca 2 + {\displaystyle {\text{Ca}}^{2+}} ) blockade of monovalent (e.g. Na + {\displaystyle {\text{Na}}^{+}} ) currents is observed in some types of ion channels. Namely,[24] Na + {\displaystyle {\text{Na}}^{+}} ions in a pure sodium solution pass unimpeded through a calcium channel, but are blocked by tiny (nM) extracellular concentrations of Ca 2 + {\displaystyle {\text{Ca}}^{2+}} ions.[24] ICB provides a transparent explanation of both the phenomenon itself and of the Langmuir-isotherm-shape of the current vs. log [ Ca 2 + ] {\displaystyle \log[{\text{Ca}}^{2+}]} attenuation curve, deriving them from the strong affinity and an FD distribution of Ca 2 + {\displaystyle {\ce {Ca^2+}}} ions.[2][13] Vice versa, appearance divalent blockade presents strong evidence in favour of ICB

Similarly, ICB can account for the divalent (Iodide I 2 {\displaystyle {\ce {I^2-}}} ) blockade that has been observed in biological chloride ( Cl {\displaystyle {\ce {Cl-}}} )-selective channels.[14]

Special features

Comparisons between ICB and ECB

ICB and ECB should be considered as two versions of the same fundamental electrostatic phenomenon. Both ICB and ECB are based on charge quantisation and on the finite single-particle charging energy Δ E {\displaystyle \Delta E} , resulting in close similarity of the governing equations and manifestations of these closely related phenomena. Nonetheless, there are important distinctions between ICB and ECB: their similarities and differences are summarised in Table 1.

Table 1. Comparison between ICB and ECB
Property ICB ECB
Mobile charge carriers cations ( Na + , K + , Ca 2 + , {\displaystyle {\text{Na}}^{+},{\text{K}}^{+},{\text{Ca}}^{2+},} etc...),

anions ( Cl , I 2 , {\displaystyle {\text{Cl}}^{-},{\text{I}}^{2-},} etc.)

electrons ( e {\displaystyle e^{-}} )
Valence of mobile charge carriers, z {\displaystyle z} positive (+1, +2, +3,...),

negative (-1, -2...)

z = 1 {\displaystyle z=-1}
Transport engine Classical diffusion QM tunneling
Conductance oscillations Yes, valence dependent Yes
Coulomb staircase for occupancy, P c {\displaystyle P_{c}} Yes, FD-shaped Yes, FD-shaped

Particular cases

Coulomb blockade can also appear in superconductors; in such a case the free charge carriers are Cooper pairs ( z = 2 {\displaystyle z=-2} ) [29]

In addition, Pauli spin blockade [30] represents a special kind of Coulomb blockade, connected with Pauli exclusion principle.

Quantum analogies

Despite appearing in completely classical systems, ICB exhibits some phenomena reminiscent of quantum-mechanics (QM). They arise because the charge/entity discreteness of the ions leads to quantisation of the energy Δ E {\displaystyle \Delta E} spectrum and hence to the QM-analogies:[31]

  • Noise-driven diffusive motion provides for escape over barriers, comparable to QM-tunnelling in ECB.
  • The particular FD shape[2] of the Ca 2 + {\displaystyle {\text{Ca}}^{2+}} occupancy vs log [ Ca 2 + ] {\displaystyle \log {[{\text{Ca}}^{2+}]}} plays a significant role in the ICB explanation of the divalent blockade phenomenon.[13] The appearance of an FD distribution in the diffusion of classical particles obeying an exclusion principle, has been demonstrated rigorously.[19][32][33]

See also

References

  1. ^ a b c d e f g Krems, Matt; Di Ventra, Massimiliano (2013-01-10). "Ionic Coulomb blockade in nanopores". Journal of Physics: Condensed Matter. 25 (6): 065101. arXiv:1103.2749. Bibcode:2013JPCM...25f5101K. doi:10.1088/0953-8984/25/6/065101. PMC 4324628. PMID 23307655.
  2. ^ a b c d e f g h i j k l m n Kaufman, Igor Kh; McClintock, Peter V E; Eisenberg, Robert S (2015). "Coulomb blockade model of permeation and selectivity in biological ion channels". New Journal of Physics. 17 (8): 083021. Bibcode:2015NJPh...17h3021K. doi:10.1088/1367-2630/17/8/083021.
  3. ^ a b c d Feng, Jiandong; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano; Radenovic, Aleksandra (2016). "Observation of ionic Coulomb blockade in nanopores". Nature Materials. 15 (8): 850–855. Bibcode:2016NatMa..15..850F. doi:10.1038/nmat4607. PMID 27019385.
  4. ^ Averin, D. V.; Likharev, K. K. (1986-02-01). "Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions". Journal of Low Temperature Physics. 62 (3–4): 345–373. Bibcode:1986JLTP...62..345A. doi:10.1007/bf00683469. ISSN 0022-2291. S2CID 120841063.
  5. ^ a b Beenakker, C. W. J. (1991-07-15). "Theory of Coulomb-blockade oscillations in the conductance of a quantum dot". Physical Review B. 44 (4): 1646–1656. Bibcode:1991PhRvB..44.1646B. doi:10.1103/PhysRevB.44.1646. hdl:1887/3358. PMID 9999698.
  6. ^ a b c Eisenman, George; Horn, Richard (1983-10-01). "Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels". The Journal of Membrane Biology. 76 (3): 197–225. doi:10.1007/bf01870364. ISSN 0022-2631. PMID 6100862. S2CID 26390118.
  7. ^ von Kitzing, Eberhard (1992), "A Novel Model for Saturation of Ion Conductivity in Transmembrane Channels", Membrane Proteins: Structures, Interactions and Models, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol. 25, Springer Netherlands, pp. 297–314, doi:10.1007/978-94-011-2718-9_25, ISBN 9789401052054
  8. ^ a b c Zhang, J.; Kamenev, A.; Shklovskii, B. I. (2006-05-19). "Ion exchange phase transitions in water-filled channels with charged walls". Physical Review E. 73 (5): 051205. arXiv:cond-mat/0510327. Bibcode:2006PhRvE..73e1205Z. doi:10.1103/PhysRevE.73.051205. PMID 16802926.
  9. ^ a b c Roux, Benot; Allen, Toby; Bernche, Simon; Im, Wonpil (2004-02-01). "Theoretical and computational models of biological ion channels" (PDF). Quarterly Reviews of Biophysics. 37 (1): 15–103. Bibcode:2004APS..MAR.J7004R. doi:10.1017/s0033583504003968. ISSN 0033-5835. PMID 17390604. S2CID 6213437.
  10. ^ a b Yesylevskyy, S.O.; Kharkyanen, V.N. (2005-06-01). "Barrier-less knock-on conduction in ion channels: peculiarity or general mechanism?". Chemical Physics. 312 (1–3): 127–133. Bibcode:2005CP....312..127Y. doi:10.1016/j.chemphys.2004.11.031. ISSN 0301-0104.
  11. ^ a b Corry, Ben; Vora, Taira; Chung, Shin-Ho (June 2005). "Electrostatic basis of valence selectivity in cationic channels". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1711 (1): 72–86. doi:10.1016/j.bbamem.2005.03.002. ISSN 0005-2736. PMID 15904665.
  12. ^ a b c d Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S. (2013-11-19). "Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family". Physical Review E. 88 (5): 052712. arXiv:1305.1847. Bibcode:2013PhRvE..88e2712K. doi:10.1103/PhysRevE.88.052712. PMID 24329301. S2CID 10145481.
  13. ^ a b c Kaufman, Igor Kh.; Fedorenko, Olena A.; Luchinsky, Dmitri G.; Gibby, William A.T.; Roberts, Stephen K.; McClintock, Peter V.E.; Eisenberg, Robert S. (2017). "Ionic Coulomb blockade and anomalous mole fraction effect in the NaChBac bacterial ion channel and its charge-varied mutants". EPJ Nonlinear Biomedical Physics. 5: 4. doi:10.1051/epjnbp/2017003. ISSN 2195-0008.
  14. ^ a b Hartzell, Criss; Putzier, Ilva; Arreola, Jorge (2005-03-17). "Calcium -activated chloride channels". Annual Review of Physiology. 67 (1): 719–758. doi:10.1146/annurev.physiol.67.032003.154341. ISSN 0066-4278. PMID 15709976.
  15. ^ a b c d e Zwolak, Michael; Wilson, James; Ventra, Massimiliano Di (2010). "Dehydration and ionic conductance quantization in nanopores". Journal of Physics: Condensed Matter. 22 (45): 454126. arXiv:1005.2550. Bibcode:2010JPCM...22S4126Z. doi:10.1088/0953-8984/22/45/454126. ISSN 0953-8984. PMC 2997750. PMID 21152075.
  16. ^ a b c Landsberg, Peter T. (2014-03-05). Thermodynamics and Statistical Mechanics. Courier Corporation. ISBN 9780486167589.
  17. ^ a b c d Krauss, Daniel; Eisenberg, Bob; Gillespie, Dirk (2011-03-06). "Selectivity sequences in a model calcium channel: role of electrostatic field strength". European Biophysics Journal. 40 (6): 775–782. doi:10.1007/s00249-011-0691-6. ISSN 0175-7571. PMC 3124256. PMID 21380773.
  18. ^ Nadler, Boaz; Hollerbach, Uwe; Eisenberg, R. S. (2003-08-13). "Dielectric boundary force and its crucial role in gramicidin". Physical Review E. 68 (2): 021905. Bibcode:2003PhRvE..68b1905N. doi:10.1103/physreve.68.021905. ISSN 1063-651X. PMID 14525004.
  19. ^ a b Fowler, R. H. (1935). "A Statistical Derivation of Langmuir's Adsorption Isotherm". Mathematical Proceedings of the Cambridge Philosophical Society. 31 (2): 260–264. Bibcode:1935PCPS...31..260F. doi:10.1017/S0305004100013359. ISSN 1469-8064. S2CID 137095413.
  20. ^ Ainsworth, Stanley (1977), "Michaelis-Menten Kinetics", Steady-State Enzyme Kinetics, Macmillan Education UK, pp. 43–73, doi:10.1007/978-1-349-01959-5_3, ISBN 9781349019618
  21. ^ a b c Kaufman, I.Kh.; Gibby W.A.T., Luchinsky D.G., McClintock P.V.E. (2017). "Effect of local binding on stochastic transport in ion channels - IEEE Conference Publication". arXiv:1704.00956. doi:10.1109/ICNF.2017.7985974. S2CID 1163779. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  22. ^ Luchinsky, D.G; Gibby W.A.T, Kaufman I.Kh., McClintock P.V.E., Timucin D.A. (2017). "Relation between selectivity and conductivity in narrow ion channels - IEEE Conference Publication" (PDF). doi:10.1109/ICNF.2017.7985973. S2CID 38221919. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  23. ^ Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Ventra, Massimiliano Di (2018). "Surface effects on ionic Coulomb blockade in nanometer-size pores". Nanotechnology. 29 (2): 025703. arXiv:1711.09725. Bibcode:2018Nanot..29b5703T. doi:10.1088/1361-6528/aa9a14. ISSN 0957-4484. PMID 29130892. S2CID 206087040.
  24. ^ a b c Sather, William A.; McCleskey, Edwin W. (2003). "Permeation and Selectivity in Calcium Channels". Annual Review of Physiology. 65 (1): 133–159. doi:10.1146/annurev.physiol.65.092101.142345. ISSN 0066-4278. PMID 12471162.
  25. ^ Boda, Dezso; Nonner, Wolfgang; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk (2008). "Volume exclusion in calcium selective channels". Biophysical Journal. 94 (9): 3486–3496. Bibcode:2008BpJ....94.3486B. doi:10.1529/biophysj.107.122796. PMC 2292364. PMID 18199663.
  26. ^ Dudev, Todor; Lim, Carmay (2014). "Evolution of eukaryotic ion Channels: principles underlying the conversion of Ca 2 + {\displaystyle ^{2+}} -selective to Na + {\displaystyle ^{+}} ‑selective channels". Journal of the American Chemical Society. 136 (9): 3553–559. doi:10.1021/ja4121132. PMID 24517213.
  27. ^ Corry, Ben (2013). "Na + {\displaystyle ^{+}} /Ca 2 + {\displaystyle ^{2+}} selectivity in the bacterial voltage-gated sodium channel NavAb". Peer J. 1: e16. doi:10.7717/peerj.16. PMC 3629057. PMID 23638350.
  28. ^ Heinemann, Stefan H.; Terlau, Heinrich; Stühmer, Walter; Imoto, Keiji; Numa, Shosaku (1992). "Calcium channel characteristics conferred on the sodium channel by single mutations". Nature. 356 (6368): 441–443. Bibcode:1992Natur.356..441H. doi:10.1038/356441a0. ISSN 0028-0836. PMID 1313551. S2CID 4266532.
  29. ^ Amar, A.; Song, D.; Lobb, C. J.; Wellstood, F. C. (1994-05-16). "2e to e periodic pair currents in superconducting Coulomb-blockade electrometers". Physical Review Letters. 72 (20): 3234–3237. Bibcode:1994PhRvL..72.3234A. doi:10.1103/PhysRevLett.72.3234. PMID 10056141.
  30. ^ Danon, J.; Nazarov, Yu. V. (2009-07-01). "Pauli spin blockade in the presence of strong spin-orbit coupling". Physical Review B. 80 (4): 041301. arXiv:0905.1818. Bibcode:2009PhRvB..80d1301D. doi:10.1103/PhysRevB.80.041301. S2CID 53623926.
  31. ^ Meyertholen, Andrew; Di Ventra, Massimiliano (2013-05-31). "Quantum Analogies in Ionic Transport Through Nanopores". arXiv:1305.7450 [cond-mat.mes-hall].
  32. ^ Kaniadakis, G.; Quarati, P. (1993-12-01). "Kinetic equation for classical particles obeying an exclusion principle". Physical Review E. 48 (6): 4263–4270. Bibcode:1993PhRvE..48.4263K. doi:10.1103/PhysRevE.48.4263. PMID 9961106.
  33. ^ Kaniadakis, G.; Quarati, P. (1994-06-01). "Classical model of bosons and fermions" (PDF). Physical Review E. 49 (6): 5103–5110. Bibcode:1994PhRvE..49.5103K. doi:10.1103/PhysRevE.49.5103. PMID 9961832.