Lifting-the-exponent lemma

Number theoretic lemma

In elementary number theory, the lifting-the-exponent lemma (LTE lemma) provides several formulas for computing the p-adic valuation ν p {\displaystyle \nu _{p}} of special forms of integers. The lemma is named as such because it describes the steps necessary to "lift" the exponent of p {\displaystyle p} in such expressions. It is related to Hensel's lemma.

Background

The exact origins of the LTE lemma are unclear; the result, with its present name and form, has only come into focus within the last 10 to 20 years.[1] However, several key ideas used in its proof were known to Gauss and referenced in his Disquisitiones Arithmeticae.[2] Despite chiefly featuring in mathematical olympiads, it is sometimes applied to research topics, such as elliptic curves.[3][4]

Statements

For any integers x {\displaystyle x} and y {\displaystyle y} , a positive integer n {\displaystyle n} , and a prime number p {\displaystyle p} such that p x {\displaystyle p\nmid x} and p y {\displaystyle p\nmid y} , the following statements hold:

  • When p {\displaystyle p} is odd:
    • If p x y {\displaystyle p\mid x-y} , then ν p ( x n y n ) = ν p ( x y ) + ν p ( n ) {\displaystyle \nu _{p}(x^{n}-y^{n})=\nu _{p}(x-y)+\nu _{p}(n)} .
    • If p x + y {\displaystyle p\mid x+y} and n {\displaystyle n} is odd, then ν p ( x n + y n ) = ν p ( x + y ) + ν p ( n ) {\displaystyle \nu _{p}(x^{n}+y^{n})=\nu _{p}(x+y)+\nu _{p}(n)} .
    • If p x + y {\displaystyle p\mid x+y} and n {\displaystyle n} is even, then ν p ( x n + y n ) = 0 {\displaystyle \nu _{p}(x^{n}+y^{n})=0} .
  • When p = 2 {\displaystyle p=2} :
    • If 2 x y {\displaystyle 2\mid x-y} and n {\displaystyle n} is even, then ν 2 ( x n y n ) = ν 2 ( x y ) + ν 2 ( x + y ) + ν 2 ( n ) 1 {\displaystyle \nu _{2}(x^{n}-y^{n})=\nu _{2}(x-y)+\nu _{2}(x+y)+\nu _{2}(n)-1} .
    • If 2 x y {\displaystyle 2\mid x-y} and n {\displaystyle n} is odd, then ν 2 ( x n y n ) = ν 2 ( x y ) {\displaystyle \nu _{2}(x^{n}-y^{n})=\nu _{2}(x-y)} . (Follows from the general case below.)
    • Corollaries:
      • If 4 x y {\displaystyle 4\mid x-y} , then ν 2 ( x + y ) = 1 {\displaystyle \nu _{2}(x+y)=1} and thus ν 2 ( x n y n ) = ν 2 ( x y ) + ν 2 ( n ) {\displaystyle \nu _{2}(x^{n}-y^{n})=\nu _{2}(x-y)+\nu _{2}(n)} .
      • If 2 x + y {\displaystyle 2\mid x+y} and n {\displaystyle n} is even, then ν 2 ( x n + y n ) = 1 {\displaystyle \nu _{2}(x^{n}+y^{n})=1} .
      • If 2 x + y {\displaystyle 2\mid x+y} and n {\displaystyle n} is odd, then ν 2 ( x n + y n ) = ν 2 ( x + y ) {\displaystyle \nu _{2}(x^{n}+y^{n})=\nu _{2}(x+y)} .
  • For all p {\displaystyle p} :
    • If p x y {\displaystyle p\mid x-y} and p n {\displaystyle p\nmid n} , then ν p ( x n y n ) = ν p ( x y ) {\displaystyle \nu _{p}(x^{n}-y^{n})=\nu _{p}(x-y)} .
    • If p x + y {\displaystyle p\mid x+y} , p n {\displaystyle p\nmid n} and n {\displaystyle n} is odd, then ν p ( x n + y n ) = ν p ( x + y ) {\displaystyle \nu _{p}(x^{n}+y^{n})=\nu _{p}(x+y)} .

Generalizations

LTE has been generalized to complex values of x , y {\displaystyle x,y} provided that the value of x n y n x y {\displaystyle {\tfrac {x^{n}-y^{n}}{x-y}}} is integer.[5]

Proof outline

Base case

The base case ν p ( x n y n ) = ν p ( x y ) {\displaystyle \nu _{p}(x^{n}-y^{n})=\nu _{p}(x-y)} when p n {\displaystyle p\nmid n} is proven first. Because p x y x y ( mod p ) {\displaystyle p\mid x-y\iff x\equiv y{\pmod {p}}} ,

x n 1 + x n 2 y + x n 3 y 2 + + y n 1 n x n 1 0 ( mod p )   ( 1 ) {\displaystyle x^{n-1}+x^{n-2}y+x^{n-3}y^{2}+\dots +y^{n-1}\equiv nx^{n-1}\not \equiv 0{\pmod {p}}\ (1)}

The fact that x n y n = ( x y ) ( x n 1 + x n 2 y + x n 3 y 2 + + y n 1 ) {\displaystyle x^{n}-y^{n}=(x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^{2}+\dots +y^{n-1})} completes the proof. The condition ν p ( x n + y n ) = ν p ( x + y ) {\displaystyle \nu _{p}(x^{n}+y^{n})=\nu _{p}(x+y)} for odd n {\displaystyle n} is similar.

General case (odd p)

Via the binomial expansion, the substitution y = x + k p {\displaystyle y=x+kp} can be used in (1) to show that ν p ( x p y p ) = ν p ( x y ) + 1 {\displaystyle \nu _{p}(x^{p}-y^{p})=\nu _{p}(x-y)+1} because (1) is a multiple of p {\displaystyle p} but not p 2 {\displaystyle p^{2}} .[1] Likewise, ν p ( x p + y p ) = ν p ( x + y ) + 1 {\displaystyle \nu _{p}(x^{p}+y^{p})=\nu _{p}(x+y)+1} .

Then, if n {\displaystyle n} is written as p a b {\displaystyle p^{a}b} where p b {\displaystyle p\nmid b} , the base case gives ν p ( x n y n ) = ν p ( ( x p a ) b ( y p a ) b ) = ν p ( x p a y p a ) {\displaystyle \nu _{p}(x^{n}-y^{n})=\nu _{p}((x^{p^{a}})^{b}-(y^{p^{a}})^{b})=\nu _{p}(x^{p^{a}}-y^{p^{a}})} . By induction on a {\displaystyle a} ,

ν p ( x p a y p a ) = ν p ( ( ( ( x p ) p ) ) p ( ( ( y p ) p ) ) p )   (exponentiation used  a  times per term) = ν p ( x y ) + a {\displaystyle {\begin{aligned}\nu _{p}(x^{p^{a}}-y^{p^{a}})&=\nu _{p}(((\dots (x^{p})^{p}\dots ))^{p}-((\dots (y^{p})^{p}\dots ))^{p})\ {\text{(exponentiation used }}a{\text{ times per term)}}\\&=\nu _{p}(x-y)+a\end{aligned}}}

A similar argument can be applied for ν p ( x n + y n ) {\displaystyle \nu _{p}(x^{n}+y^{n})} .

General case (p = 2)

The proof for the odd p {\displaystyle p} case cannot be directly applied when p = 2 {\displaystyle p=2} because the binomial coefficient ( p 2 ) = p ( p 1 ) 2 {\displaystyle {\binom {p}{2}}={\frac {p(p-1)}{2}}} is only an integral multiple of p {\displaystyle p} when p {\displaystyle p} is odd.

However, it can be shown that ν 2 ( x n y n ) = ν 2 ( x y ) + ν 2 ( n ) {\displaystyle \nu _{2}(x^{n}-y^{n})=\nu _{2}(x-y)+\nu _{2}(n)} when 4 x y {\displaystyle 4\mid x-y} by writing n = 2 a b {\displaystyle n=2^{a}b} where a {\displaystyle a} and b {\displaystyle b} are integers with b {\displaystyle b} odd and noting that

ν 2 ( x n y n ) = ν 2 ( ( x 2 a ) b ( y 2 a ) b ) = ν 2 ( x 2 a y 2 a ) = ν 2 ( ( x 2 a 1 + y 2 a 1 ) ( x 2 a 2 + y 2 a 2 ) ( x 2 + y 2 ) ( x + y ) ( x y ) ) = ν 2 ( x y ) + a {\displaystyle {\begin{aligned}\nu _{2}(x^{n}-y^{n})&=\nu _{2}((x^{2^{a}})^{b}-(y^{2^{a}})^{b})\\&=\nu _{2}(x^{2^{a}}-y^{2^{a}})\\&=\nu _{2}((x^{2^{a-1}}+y^{2^{a-1}})(x^{2^{a-2}}+y^{2^{a-2}})\cdots (x^{2}+y^{2})(x+y)(x-y))\\&=\nu _{2}(x-y)+a\end{aligned}}}

because since x y ± 1 ( mod 4 ) {\displaystyle x\equiv y\equiv \pm 1{\pmod {4}}} , each factor in the difference of squares step in the form x 2 k + y 2 k {\displaystyle x^{2^{k}}+y^{2^{k}}} is congruent to 2 modulo 4.

The stronger statement ν 2 ( x n y n ) = ν 2 ( x y ) + ν 2 ( x + y ) + ν 2 ( n ) 1 {\displaystyle \nu _{2}(x^{n}-y^{n})=\nu _{2}(x-y)+\nu _{2}(x+y)+\nu _{2}(n)-1} when 2 x y {\displaystyle 2\mid x-y} is proven analogously.[1]

In competitions

Example problem

The LTE lemma can be used to solve 2020 AIME I #12:

Let n {\displaystyle n} be the least positive integer for which 149 n 2 n {\displaystyle 149^{n}-2^{n}} is divisible by 3 3 5 5 7 7 . {\displaystyle 3^{3}\cdot 5^{5}\cdot 7^{7}.} Find the number of positive integer divisors of n {\displaystyle n} .[6]

Solution. Note that 149 2 = 147 = 3 7 2 {\displaystyle 149-2=147=3\cdot 7^{2}} . Using the LTE lemma, since 3 149 {\displaystyle 3\nmid 149} and 2 {\displaystyle 2} but 3 147 {\displaystyle 3\mid 147} , ν 3 ( 149 n 2 n ) = ν 3 ( 147 ) + ν 3 ( n ) = ν 3 ( n ) + 1 {\displaystyle \nu _{3}(149^{n}-2^{n})=\nu _{3}(147)+\nu _{3}(n)=\nu _{3}(n)+1} . Thus, 3 3 149 n 2 n 3 2 n {\displaystyle 3^{3}\mid 149^{n}-2^{n}\iff 3^{2}\mid n} . Similarly, 7 149 , 2 {\displaystyle 7\nmid 149,2} but 7 147 {\displaystyle 7\mid 147} , so ν 7 ( 149 n 2 n ) = ν 7 ( 147 ) + ν 7 ( n ) = ν 7 ( n ) + 2 {\displaystyle \nu _{7}(149^{n}-2^{n})=\nu _{7}(147)+\nu _{7}(n)=\nu _{7}(n)+2} and 7 7 149 n 2 n 7 5 n {\displaystyle 7^{7}\mid 149^{n}-2^{n}\iff 7^{5}\mid n} .

Since 5 147 {\displaystyle 5\nmid 147} , the factors of 5 are addressed by noticing that since the residues of 149 n {\displaystyle 149^{n}} modulo 5 follow the cycle 4 , 1 , 4 , 1 {\displaystyle 4,1,4,1} and those of 2 n {\displaystyle 2^{n}} follow the cycle 2 , 4 , 3 , 1 {\displaystyle 2,4,3,1} , the residues of 149 n 2 n {\displaystyle 149^{n}-2^{n}} modulo 5 cycle through the sequence 2 , 2 , 1 , 0 {\displaystyle 2,2,1,0} . Thus, 5 149 n 2 n {\displaystyle 5\mid 149^{n}-2^{n}} iff n = 4 k {\displaystyle n=4k} for some positive integer k {\displaystyle k} . The LTE lemma can now be applied again: ν 5 ( 149 4 k 2 4 k ) = ν 5 ( ( 149 4 ) k ( 2 4 ) k ) = ν 5 ( 149 4 2 4 ) + ν 5 ( k ) {\displaystyle \nu _{5}(149^{4k}-2^{4k})=\nu _{5}((149^{4})^{k}-(2^{4})^{k})=\nu _{5}(149^{4}-2^{4})+\nu _{5}(k)} . Since 149 4 2 4 ( 1 ) 4 2 4 15 ( mod 25 ) {\displaystyle 149^{4}-2^{4}\equiv (-1)^{4}-2^{4}\equiv -15{\pmod {25}}} , ν 5 ( 149 4 2 4 ) = 1 {\displaystyle \nu _{5}(149^{4}-2^{4})=1} . Hence 5 5 149 n 2 n 5 4 k 4 5 4 n {\displaystyle 5^{5}\mid 149^{n}-2^{n}\iff 5^{4}\mid k\iff 4\cdot 5^{4}\mid n} .

Combining these three results, it is found that n = 2 2 3 2 5 4 7 5 {\displaystyle n=2^{2}\cdot 3^{2}\cdot 5^{4}\cdot 7^{5}} , which has ( 2 + 1 ) ( 2 + 1 ) ( 4 + 1 ) ( 5 + 1 ) = 270 {\displaystyle (2+1)(2+1)(4+1)(5+1)=270} positive divisors.

References

  1. ^ a b c Pavardi, A. H. (2011). Lifting The Exponent Lemma (LTE). Retrieved July 11, 2020, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.5543 (Note: The old link to the paper is broken; try https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/lifting-the-exponent.pdf instead.)
  2. ^ Gauss, C. (1801) Disquisitiones arithmeticae. Results shown in Articles 86–87. https://gdz.sub.uni-goettingen.de/id/PPN235993352?tify={%22pages%22%3A%5B70%5D}
  3. ^ Geretschläger, R. (2020). Engaging Young Students in Mathematics through Competitions – World Perspectives and Practices. World Scientific. https://books.google.com/books?id=FNPkDwAAQBAJ&pg=PP1
  4. ^ Heuberger, C. and Mazzoli, M. (2017). Elliptic curves with isomorphic groups of points over finite field extensions. Journal of Number Theory, 181, 89–98. https://doi.org/10.1016/j.jnt.2017.05.028
  5. ^ S. Riasat, Generalising `LTE' and application to Fibonacci-type sequences.
  6. ^ 2020 AIME I Problems. (2020). Art of Problem Solving. Retrieved July 11, 2020, from https://artofproblemsolving.com/wiki/index.php/2020_AIME_I_Problems