Local invariant cycle theorem

Invariant cycle theorem

In mathematics, the local invariant cycle theorem was originally a conjecture of Griffiths [1][2] which states that, given a surjective proper map p {\displaystyle p} from a Kähler manifold X {\displaystyle X} to the unit disk that has maximal rank everywhere except over 0, each cohomology class on p 1 ( t ) , t 0 {\displaystyle p^{-1}(t),t\neq 0} is the restriction of some cohomology class on the entire X {\displaystyle X} if the cohomology class is invariant under a circle action (monodromy action); in short,

H ( X ) H ( p 1 ( t ) ) S 1 {\displaystyle \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(p^{-1}(t))^{S^{1}}}

is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.[3]

Deligne also proved the following.[4][5] Given a proper morphism X S {\displaystyle X\to S} over the spectrum S {\displaystyle S} of the henselization of k [ T ] {\displaystyle k[T]} , k {\displaystyle k} an algebraically closed field, if X {\displaystyle X} is essentially smooth over k {\displaystyle k} and X η ¯ {\displaystyle X_{\overline {\eta }}} smooth over η ¯ {\displaystyle {\overline {\eta }}} , then the homomorphism on Q {\displaystyle \mathbb {Q} } -cohomology:

H ( X s ) H ( X η ¯ ) Gal ( η ¯ / η ) {\displaystyle \operatorname {H} ^{*}(X_{s})\to \operatorname {H} ^{*}(X_{\overline {\eta }})^{\operatorname {Gal} ({\overline {\eta }}/\eta )}}

is surjective, where s , η {\displaystyle s,\eta } are the special and generic points and the homomorphism is the composition H ( X s ) H ( X ) H ( X η ) H ( X η ¯ ) . {\displaystyle \operatorname {H} ^{*}(X_{s})\simeq \operatorname {H} ^{*}(X)\to \operatorname {H} ^{*}(X_{\eta })\to \operatorname {H} ^{*}(X_{\overline {\eta }}).}

See also

  • Hodge theory

Notes

  1. ^ Clemens 1977, Introduction
  2. ^ Griffiths 1970, Conjecture 8.1.
  3. ^ Beilinson, Bernstein & Deligne 1982, Corollaire 6.2.9.
  4. ^ Deligne 1980, Théorème 3.6.1.
  5. ^ Deligne 1980, (3.6.4.)

References

  • Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers". Astérisque (in French). 100. Paris: Société Mathématique de France. MR 0751966.
  • Clemens, C. H. (1977). "Degeneration of Kähler manifolds". Duke Mathematical Journal. 44 (2). doi:10.1215/S0012-7094-77-04410-6. S2CID 120378293.
  • Deligne, Pierre (1980). "La conjecture de Weil : II" (PDF). Publications Mathématiques de l'IHÉS. 52: 137–252. doi:10.1007/BF02684780. MR 0601520. S2CID 189769469. Zbl 0456.14014.
  • Griffiths, Phillip A. (1970). "Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems". Bulletin of the American Mathematical Society. 76 (2): 228–296. doi:10.1090/S0002-9904-1970-12444-2.
  • Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. [1]


  • v
  • t
  • e