Mercator series

Taylor series for the natural logarithm
Polynomial approximation to logarithm with n=1, 2, 3, and 10 in the interval (0,2).

In mathematics, the Mercator series or Newton–Mercator series is the Taylor series for the natural logarithm:

ln ( 1 + x ) = x x 2 2 + x 3 3 x 4 4 + {\displaystyle \ln(1+x)=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-{\frac {x^{4}}{4}}+\cdots }

In summation notation,

ln ( 1 + x ) = n = 1 ( 1 ) n + 1 n x n . {\displaystyle \ln(1+x)=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}x^{n}.}

The series converges to the natural logarithm (shifted by 1) whenever 1 < x 1 {\displaystyle -1<x\leq 1} .

History

The series was discovered independently by Johannes Hudde (1656)[1] and Isaac Newton (1665) but neither published the result. Nicholas Mercator also independently discovered it, and included values of the series for small values in his 1668 treatise Logarithmotechnia; the general series was included in John Wallis's 1668 review of the book in the Philosophical Transactions.[2]

Derivation

The series can be obtained from Taylor's theorem, by inductively computing the nth derivative of ln ( x ) {\displaystyle \ln(x)} at x = 1 {\displaystyle x=1} , starting with

d d x ln ( x ) = 1 x . {\displaystyle {\frac {d}{dx}}\ln(x)={\frac {1}{x}}.}

Alternatively, one can start with the finite geometric series ( t 1 {\displaystyle t\neq -1} )

1 t + t 2 + ( t ) n 1 = 1 ( t ) n 1 + t {\displaystyle 1-t+t^{2}-\cdots +(-t)^{n-1}={\frac {1-(-t)^{n}}{1+t}}}

which gives

1 1 + t = 1 t + t 2 + ( t ) n 1 + ( t ) n 1 + t . {\displaystyle {\frac {1}{1+t}}=1-t+t^{2}-\cdots +(-t)^{n-1}+{\frac {(-t)^{n}}{1+t}}.}

It follows that

0 x d t 1 + t = 0 x ( 1 t + t 2 + ( t ) n 1 + ( t ) n 1 + t )   d t {\displaystyle \int _{0}^{x}{\frac {dt}{1+t}}=\int _{0}^{x}\left(1-t+t^{2}-\cdots +(-t)^{n-1}+{\frac {(-t)^{n}}{1+t}}\right)\ dt}

and by termwise integration,

ln ( 1 + x ) = x x 2 2 + x 3 3 + ( 1 ) n 1 x n n + ( 1 ) n 0 x t n 1 + t   d t . {\displaystyle \ln(1+x)=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-\cdots +(-1)^{n-1}{\frac {x^{n}}{n}}+(-1)^{n}\int _{0}^{x}{\frac {t^{n}}{1+t}}\ dt.}

If 1 < x 1 {\displaystyle -1<x\leq 1} , the remainder term tends to 0 as n {\displaystyle n\to \infty } .

This expression may be integrated iteratively k more times to yield

x A k ( x ) + B k ( x ) ln ( 1 + x ) = n = 1 ( 1 ) n 1 x n + k n ( n + 1 ) ( n + k ) , {\displaystyle -xA_{k}(x)+B_{k}(x)\ln(1+x)=\sum _{n=1}^{\infty }(-1)^{n-1}{\frac {x^{n+k}}{n(n+1)\cdots (n+k)}},}

where

A k ( x ) = 1 k ! m = 0 k ( k m ) x m l = 1 k m ( x ) l 1 l {\displaystyle A_{k}(x)={\frac {1}{k!}}\sum _{m=0}^{k}{k \choose m}x^{m}\sum _{l=1}^{k-m}{\frac {(-x)^{l-1}}{l}}}

and

B k ( x ) = 1 k ! ( 1 + x ) k {\displaystyle B_{k}(x)={\frac {1}{k!}}(1+x)^{k}}

are polynomials in x.[3]

Special cases

Setting x = 1 {\displaystyle x=1} in the Mercator series yields the alternating harmonic series

k = 1 ( 1 ) k + 1 k = ln ( 2 ) . {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{k}}=\ln(2).}

Complex series

The complex power series

n = 1 z n n = z + z 2 2 + z 3 3 + z 4 4 + {\displaystyle \sum _{n=1}^{\infty }{\frac {z^{n}}{n}}=z+{\frac {z^{2}}{2}}+{\frac {z^{3}}{3}}+{\frac {z^{4}}{4}}+\cdots }

is the Taylor series for log ( 1 z ) {\displaystyle -\log(1-z)} , where log denotes the principal branch of the complex logarithm. This series converges precisely for all complex number | z | 1 , z 1 {\displaystyle |z|\leq 1,z\neq 1} . In fact, as seen by the ratio test, it has radius of convergence equal to 1, therefore converges absolutely on every disk B(0, r) with radius r < 1. Moreover, it converges uniformly on every nibbled disk B ( 0 , 1 ) ¯ B ( 1 , δ ) {\textstyle {\overline {B(0,1)}}\setminus B(1,\delta )} , with δ > 0. This follows at once from the algebraic identity:

( 1 z ) n = 1 m z n n = z n = 2 m z n n ( n 1 ) z m + 1 m , {\displaystyle (1-z)\sum _{n=1}^{m}{\frac {z^{n}}{n}}=z-\sum _{n=2}^{m}{\frac {z^{n}}{n(n-1)}}-{\frac {z^{m+1}}{m}},}

observing that the right-hand side is uniformly convergent on the whole closed unit disk.

See also

References

  1. ^ Vermij, Rienk (3 February 2012). "Bijdrage tot de bio-bibliografie van Johannes Hudde". Gewina / TGGNWT (in Dutch). 18 (1): 25–35. hdl:1874/251283. ISSN 0928-303X.
  2. ^ Roy, Ranjan (2021) [1st ed. 2011]. Series and Products in the Development of Mathematics. Vol. 1 (2nd ed.). Cambridge University Press. pp. 107, 167.
  3. ^ Medina, Luis A.; Moll, Victor H.; Rowland, Eric S. (2011). "Iterated primitives of logarithmic powers". International Journal of Number Theory. 7 (3): 623–634. arXiv:0911.1325. doi:10.1142/S179304211100423X. S2CID 115164019.
  • Weisstein, Eric W. "Mercator Series". MathWorld.
  • Anton von Braunmühl (1903) Vorlesungen über Geschichte der Trigonometrie, Seite 134, via Internet Archive
  • Eriksson, Larsson & Wahde. Matematisk analys med tillämpningar, part 3. Gothenburg 2002. p. 10.
  • Some Contemporaries of Descartes, Fermat, Pascal and Huygens from A Short Account of the History of Mathematics (4th edition, 1908) by W. W. Rouse Ball