Methyl azide

Methyl azide
Skeletal formula of methyl azide
Ball-and-stick model of the methyl azide molecule
Space-filling model of the methyl azide molecule
Names
Preferred IUPAC name
Azidomethane
Identifiers
CAS Number
  • 624-90-8 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 71411 checkY
PubChem CID
  • 79079
CompTox Dashboard (EPA)
  • DTXSID50211462 Edit this at Wikidata
InChI
  • InChI=1S/CH3N3/c1-3-4-2/h1H3 checkY
    Key: PBTHJVDBCFJQGG-UHFFFAOYSA-N checkY
  • [N-]=[N+]=N\C
Properties
Chemical formula
CH3N3
Molar mass 57.056 g·mol−1
Appearance white powder
Boiling point 20–21 °C (68–70 °F; 293–294 K)
Solubility in water
slightly soluble
Solubility alkane, ether
Explosive data
Shock sensitivity High
Friction sensitivity High
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Highly explosive
Related compounds
Related compounds
Hydrazoic acid, Chlorine azide, Ethyl azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references
Chemical compound

Methyl azide is an organic compound with the formula CH3N3. It is a white solid and it is the simplest organic azide.

Preparation and properties

Methyl azide can be prepared by the methylation of sodium azide, for instance with dimethyl sulfate in alkaline solution, followed by passing through a tube of anhydrous calcium chloride or sodium hydroxide to remove contaminating hydrazoic acid.[1] The first synthesis was reported in 1905.[2]

Decomposition to a nitrene is a first-order reaction:

CH3N3 → CH3N + N2

The product, like its notional tautomer methanimine, polymerizes at room temperature.[3]

Methyl azide might be a potential precursor in the synthesis of prebiotic molecules via nonequilibrium reactions on interstellar ices initiated by energetic galactic cosmic rays (GCR) and photons.[4]

Safety precautions

Methyl azide is stable at ambient temperature but may explode when heated. Presence of mercury increases the sensitivity to shock and spark. It is incompatible with methanol and dimethyl malonate.[5] When heated to decomposition, it emits toxic fumes of NO
x
.[citation needed] It can be stored indefinitely in the dark at −80 °C.[1]

References

  1. ^ a b Chae, Junghyun (2008-03-14), "Methyl Azide", in John Wiley & Sons, Ltd (ed.), Encyclopedia of Reagents for Organic Synthesis, Chichester, UK: John Wiley & Sons, Ltd, pp. rn00795, doi:10.1002/047084289x.rn00795, ISBN 978-0-471-93623-7
  2. ^ Dimroth, O.; Wislicenus, W. (1905). "Ueber das Methylazid". Berichte der Deutschen Chemischen Gesellschaft. 38 (2): 1573–1576. doi:10.1002/cber.19050380254.
  3. ^ O'Dell, M. S.; Darwent, B. (1970). "Thermal decomposition of methyl azide". Canadian Journal of Chemistry. 48 (7): 1140–1147. doi:10.1139/v70-187.
  4. ^ Quinto-Hernandez, A.; Wodtke, A. M.; Bennett, C. J.; Kim, Y. S.; Kaiser, R. I. (2011). "On the Interaction of Methyl Azide (CH3N3) Ices with Ionizing Radiation: Formation of Methanimine (CH2NH), Hydrogen Cyanide (HCN), and Hydrogen Isocyanide (HNC)". The Journal of Physical Chemistry A. 115 (3): 250–264. doi:10.1021/jp103028v. PMID 21162584.
  5. ^ Urben, P. G., ed. (2006). Bretherick's Handbook of Reactive Chemical Hazards (7th ed.). Elsevier. ISBN 9780123725639.
  • Graner, G.; Hirota, E.; Iijima, T.; Kuchitsu, K.; Ramsay, D. A.; Vogt, J.; Vogt, N. (1999). "CH3N3 Methyl azide". In Kuchitsu, K. (ed.). Group II Molecules and Radicals: Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group II Molecules and Radicals. Vol. 25 B. p. 1. doi:10.1007/10653318_320. ISBN 3-540-63645-5.
  • "Methyl azide". NIST Webbook. National Institute for Standards and Technology.
  • v
  • t
  • e
Compounds
  • CF
  • CO
  • CO2
  • CO3
  • CO4
  • CO5
  • CO6
  • COS
  • CS
  • C2S2
  • CS2
  • CSe2
  • C3O2
  • C3S2
  • SiC
Carbon ions
NanostructuresOxides and related
  • v
  • t
  • e
Salts and covalent derivatives of the azide ion
HN3 He
LiN3 Be(N3)2 B(N3)3 CH3N3
C(N3)4
CO(N3)2
NH4N3
N3NO
N(N3)3
H2N–N3
O FN3 Ne
NaN3 Mg(N3)2 Al(N3)3 Si(N3)4 P SO2(N3)2 ClN3 Ar
KN3 Ca(N3)2 Sc(N3)3 Ti(N3)4 VO(N3)3 Cr(N3)3
CrO2(N3)2
Mn(N3)2 Fe(N3)2
Fe(N3)3
Co(N3)2
Co(N3)3
Ni(N3)2 CuN3
Cu(N3)2
Zn(N3)2 Ga(N3)3 Ge As(N3)5 Se(N3)4 BrN3 Kr
RbN3 Sr(N3)2 Y(N3)3 Zr(N3)4 Nb Mo Tc Ru(N3)63− Rh(N3)63− Pd(N3)2 AgN3 Cd(N3)2 In Sn Sb(N3)5 Te(N3)4 IN3 Xe(N3)2
CsN3 Ba(N3)2 * Lu(N3)3 Hf Ta W Re Os Ir(N3)63− Pt(N3)62− Au(N3)4 Hg2(N3)2
Hg(N3)2
TlN3 Pb(N3)2 Bi(N3)3 Po At Rn
Fr Ra(N3)2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La(N3)3 Ce(N3)3
Ce(N3)4
Pr Nd Pm Sm(N3)3 Eu(N3)2
Eu(N3)3
Gd(N3)3 Tb Dy(N3)3 Ho(N3)3 Er Tm Yb(N3)3
** Ac(N3)3 Th(N3)4 Pa UO2(N3)2 Np Pu Am Cm Bk Cf Es Fm Md No