Molybdenum diselenide

Molybdenum diselenide
Molybdenum diselenide

Top-view atomic images of MoSe2 before and after (right) ion irradiation[1]
Names
IUPAC name
bis(selanylidene)molybdenum
Other names
molybdenum diselenide, molybdenumdiselenide, molybdenum selenide, diselanylidenemolybdenum, molybdenum(IV) selenide
Identifiers
CAS Number
  • 12058-18-3
3D model (JSmol)
  • Interactive image
ECHA InfoCard 100.031.831 Edit this at Wikidata
PubChem CID
  • 82894
CompTox Dashboard (EPA)
  • DTXSID4065234 Edit this at Wikidata
  • [Se]=[Mo]=[Se]
Properties
Chemical formula
MoSe
2
Molar mass 253.86 g/mol[2]
Appearance crystalline solid
Density 6.90 g/cm3[2]
Melting point >1200 °C[2]
Band gap ~0.85 eV (indirect, bulk)
~1.5 eV (direct, monolayer)[3][4]
Structure
Crystal structure
hP6, space group P6
3
/mmc, No 194[5]
Lattice constant
a = 0.3283 nm, c = 1.2918 nm
Coordination geometry
Trigonal prismatic (MoIV)
Pyramidal (Se2−)
Related compounds
Other anions
Molybdenum dioxide
Molybdenum disulfide
Molybdenum ditelluride
Tantalum diselenide
Other cations
Tungsten diselenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Chemical compound

Molybdenum diselenide (MoSe
2
) is an inorganic compound of molybdenum and selenium. Its structure is similar to that of MoS
2
.[6] Compounds of this category are known as transition metal dichalcogenides, abbreviated TMDCs. These compounds, as the name suggests, are made up of a transition metals and elements of group 16 on the periodic table of the elements. Compared to MoS
2
, MoSe
2
exhibits higher electrical conductivity.[7]

Structure

Like many TMDCs, MoSe
2
is a layered material with strong in-plane bonding and weak out-of-plane interactions. These interactions lead to exfoliation into two-dimensional layers of single unit cell thickness.[8]

The most common form of these TMDCs have trilayers of molybdenum sandwiched between selenium ions causing a trigonal prismatic metal bonding coordination, but it is octahedral when the compound is exfoliated. The metal ion in these compounds is surrounded by six Se2−
ions. The coordination geometry of the Mo is sometimes found as octahedral and trigonal prismatic.[9]

Synthesis

Synthesis of MoSe
2
involves direct reaction of molybdenum and selenium in a sealed tube at high temperature. Chemical vapor transport with a halogen (usually bromine or iodine) is used to purify the compound at very low pressure (less than 10-6 torr) and very high temperature (600–700 °C). It has to be heated very gradually to prevent explosion due to its strong exothermic reaction. Stoichiometric layers crystallize in a hexagonal structure as the sample cools.[9] Excess selenium can be removed by sublimation under vacuum.[10] The synthesis reaction of MoSe
2
is:

Mo + 2 Se → MoSe
2

2D-MoSe
2

Single-crystal-thick layers of MoSe
2
are produced by scotch tape exfoliation from bulk crystals or by chemical vapor deposition (CVD).[11][12]

The electron mobility of 2D-MoSe
2
is significantly higher than that of 2D-MoS
2
. 2D MoSe
2
adopts structures reminiscent of graphene, although the latter's electron mobility is thousands of times greater still. In contrast to graphene, 2D-MoSe
2
has a direct band gap, suggesting applications in transistors and photodetectors.[11]

Natural occurrence

Molybdenum(IV) selenide occurs in the nature as the extremely rare mineral drysdallite.[13]

References

Wikimedia Commons has media related to Molybdenum diselenide.
  1. ^ Iberi, Vighter; Liang, Liangbo; Ievlev, Anton V.; Stanford, Michael G.; Lin, Ming-Wei; Li, Xufan; Mahjouri-Samani, Masoud; Jesse, Stephen; Sumpter, Bobby G.; Kalinin, Sergei V.; Joy, David C.; Xiao, Kai; Belianinov, Alex; Ovchinnikova, Olga S. (2016). "Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams". Scientific Reports. 6: 30481. Bibcode:2016NatSR...630481I. doi:10.1038/srep30481. PMC 4969618. PMID 27480346.
  2. ^ a b c Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.76. ISBN 1-4398-5511-0.
  3. ^ Yun, Won Seok; Han, S. W.; Hong, Soon Cheol; Kim, In Gee; Lee, J. D. (2012). "Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)". Physical Review B. 85 (3): 033305. Bibcode:2012PhRvB..85c3305Y. doi:10.1103/PhysRevB.85.033305.
  4. ^ Kioseoglou, G.; Hanbicki, A. T.; Currie, M.; Friedman, A. L.; Jonker, B. T. (2016). "Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2". Scientific Reports. 6: 25041. arXiv:1602.00640. Bibcode:2016NatSR...625041K. doi:10.1038/srep25041. PMC 4844971. PMID 27112195.
  5. ^ Agarwal, M. K.; Patel, P. D.; Joshi, R. M. (1986). "Growth conditions and structural characterization of MoSexTe2−x (0 ⩽ x ⩽ 2) single crystals". Journal of Materials Science Letters. 5: 66–68. doi:10.1007/BF01671439. S2CID 96858586.
  6. ^ Greenwood, N. N.; Earnshaw, A. (11 November 1997). Chemistry of the Elements. Elsevier. pp. 1017–1018. ISBN 978-0-08-050109-3.
  7. ^ Eftekhari, Ali (2017). "Molybdenum Diselenide (MoSe
    2
    ) for Energy Storage, Catalysis, and Optoelectronics". Applied Materials Today. 8: 1–16. doi:10.1016/j.apmt.2017.01.006.
  8. ^ Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N.; Strano, Michael S. (2012). "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides". Nature Nanotechnology. 7 (11): 699–712. Bibcode:2012NatNa...7..699W. doi:10.1038/nnano.2012.193. PMID 23132225. S2CID 6261931.
  9. ^ a b Parilla, P.; Dillon, A.; Parkinson, B.; Jones, K.; Alleman, J.; Riker, G.; Ginley, D.; Heben, M; Formation of Nanooctahedra in Molybdenum Disulfide and Molybdenum Diselenide Using Pulsed Vapor Transport doi:10.1021/jp036202
  10. ^ Al-hilli, A.; Evans, L. The Preparation and Properties of Transition Metal Dichalcogenide Single Crystals. Journal of Crystal Growth. 1972. 15, 93–101. doi:10.1016/0022-0248(72)90129-7
  11. ^ a b "Scalable CVD process for making 2-D molybdenum diselenide". Rdmag.com. 2014-04-04. Retrieved 2014-04-09.
  12. ^ Choi, H. M. T.; Beck, V. A.; Pierce, N. A. (2014). "Next-Generation in Situ Hybridization Chain Reaction: Higher Gain, Lower Cost, Greater Durability". ACS Nano. 8 (5): 4284–94. doi:10.1021/nn405717p. PMC 4046802. PMID 24712299.
  13. ^ "Home". mindat.org.
  • v
  • t
  • e
Mo(0)
  • Mo(CO)6
  • Mo3P
Mo(II)
  • MoBr2
  • MoCl2
  • MoI2
  • MoSi2
Mo(III)
  • MoBr3
  • MoCl3
  • MoI3
  • Mo2O3
  • Mo2(OtBu)6
  • MoP
Mo(IV)
  • MoBr4
  • MoCl4
  • MoF4
  • MoO2
  • MoS2
  • MoSe2
  • MoTe2
  • MoP2
  • MoAs2
Mo(V)
  • MoCl5
  • MoF5
  • Mo2O5
Mo(VI)
  • v
  • t
  • e
Salts and covalent derivatives of the selenide ion
H2Se
H2Se2
+H
-H
He
Li2Se Be SexByOz CSe2
OCSe
(CH3)2Se
(NH4)2Se O F Ne
Na2Se MgSe Al2Se3 Si PxSey
-P
+S Cl Ar
K2Se CaSe Sc2Se3 TiSe2 V CrSe
Cr2Se3
MnSe
MnSe2
FeSe CoSe NiSe CuSe ZnSe GaSe
Ga2Se3
-Ga
GeSe
GeSe2
-Ge
As2Se3
As4Se3
Se2−
n
Br Kr
Rb2Se SrSe Y2Se3 Zr NbSe2
NbSe3
MoSe2 Tc Ru Rh Pd Ag2Se CdSe In2Se3 SnSe
SnSe2
-Sn
Sb2Se3 Te +I Xe
Cs2Se BaSe * LuSe
Lu2Se3
Hf TaSe2 WSe2
WSe3
ReSe2 Os Ir PtSe2 Au HgSe Tl2Se PbSe Bi2Se3 Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg CnSe Nh Fl Mc Lv Ts Og
 
* LaSe
La2Se3
CeSe
Ce2Se3
PrSe
Pr2Se3
NdSe
Nd2Se3
Pm SmSe
Sm2Se3
EuSe
Eu2Se3
GdSe
Gd2Se3
TbSe
Tb2Se3
DySe
Dy2Se3
HoSe
Ho2Se3
ErSe
Er2Se3
TmSe
Tm2Se3
YbSe
Yb2Se3
** Ac ThSe2 Pa USe2 Np PuSe Am Cm Bk Cf Es Fm Md No