Q tensor

In physics, Q {\displaystyle \mathbf {Q} } tensor is an orientational order parameter that describes uniaxial and biaxial nematic liquid crystals and vanishes in the isotropic liquid phase.[1] The Q {\displaystyle \mathbf {Q} } tensor is a second-order, traceless, symmetric tensor and is defined by[2][3][4]

Q = S ( n n 1 3 I ) + P ( m m 1 3 I ) {\displaystyle \mathbf {Q} =S\left(\mathbf {n} \mathbf {n} -{\frac {1}{3}}\mathbf {I} \right)+P\left(\mathbf {m} \mathbf {m} -{\frac {1}{3}}\mathbf {I} \right)}

where S = S ( T ) {\displaystyle S=S(T)} and P = P ( T ) {\displaystyle P=P(T)} are scalar order parameters, ( n , m ) {\displaystyle (\mathbf {n} ,\mathbf {m} )} are the two directors of the nematic phase and T {\displaystyle T} is the temperature; in uniaxial liquid crystals, P = 0 {\displaystyle P=0} . The components of the tensor are

Q i j = S ( n i n j 1 3 δ i j ) + P ( m i m j 1 3 δ i j ) {\displaystyle Q_{ij}=S\left(n_{i}n_{j}-{\frac {1}{3}}\delta _{ij}\right)+P\left(m_{i}m_{j}-{\frac {1}{3}}\delta _{ij}\right)}

The states with directors n {\displaystyle \mathbf {n} } and n {\displaystyle -\mathbf {n} } are physically equivalent and similarly the states with directors m {\displaystyle \mathbf {m} } and m {\displaystyle -\mathbf {m} } are physically equivalent.

The Q {\displaystyle \mathbf {Q} } tensor can always be diagonalized,

Q = 1 2 ( S + P 0 0 0 S P 0 0 0 2 S ) {\displaystyle \mathbf {Q} =-{\frac {1}{2}}{\begin{pmatrix}S+P&0&0\\0&S-P&0\\0&0&-2S\\\end{pmatrix}}}

The following are the invariants of the Q {\displaystyle \mathbf {Q} } tensor

δ = Q i j Q i j = 1 2 ( 3 S 2 + P 2 ) , Δ = Q i j Q j k Q k i = 3 4 S ( S 2 P 2 ) ; {\displaystyle \delta =Q_{ij}Q_{ij}={\frac {1}{2}}(3S^{2}+P^{2}),\quad \Delta =Q_{ij}Q_{jk}Q_{ki}={\frac {3}{4}}S(S^{2}-P^{2});}

the first-order invariant Q i i = 0 {\displaystyle Q_{ii}=0} is trivial here. It can be shown that δ 3 6 Δ 2 . {\displaystyle \delta ^{3}\geq 6\Delta ^{2}.}

Uniaxial nematics

In uniaxial nematic liquid crystals, P = 0 {\displaystyle P=0} and therefore the Q {\displaystyle \mathbf {Q} } tensor reduces to

Q = S ( n n 1 3 I ) . {\displaystyle \mathbf {Q} =S\left(\mathbf {n} \mathbf {n} -{\frac {1}{3}}\mathbf {I} \right).}

The scalar order parameter is defined as follows. If θ m o l {\displaystyle \theta _{\mathrm {mol} }} represents the angle between the axis of a nematic molecular and the director axis n {\displaystyle \mathbf {n} } , then[2]

S = P 2 ( cos θ m o l ) = 1 2 3 cos 2 θ m o l 1 = 1 2 ( 3 cos 2 θ m o l 1 ) f ( θ m o l ) d Ω {\displaystyle S=\langle P_{2}(\cos \theta _{\mathrm {mol} })\rangle ={\frac {1}{2}}\langle 3\cos ^{2}\theta _{\mathrm {mol} }-1\rangle ={\frac {1}{2}}\int (3\cos ^{2}\theta _{\mathrm {mol} }-1)f(\theta _{\mathrm {mol} })d\Omega }

where {\displaystyle \langle \cdot \rangle } denotes the ensemble average of the orientational angles calculated with respect to the distribution function f ( θ m o l ) {\displaystyle f(\theta _{\mathrm {mol} })} and d Ω = sin θ m o l d θ m o l d ϕ m o l {\displaystyle d\Omega =\sin \theta _{\mathrm {mol} }d\theta _{\mathrm {mol} }d\phi _{\mathrm {mol} }} is the solid angle. The distribution function must necessarily satisfy the condition f ( θ m o l + π ) = f ( θ m o l ) {\displaystyle f(\theta _{\mathrm {mol} }+\pi )=f(\theta _{\mathrm {mol} })} since the directors n {\displaystyle \mathbf {n} } and n {\displaystyle -\mathbf {n} } are physically equivalent.

The range for S {\displaystyle S} is given by 1 / 2 S 1 {\displaystyle -1/2\leq S\leq 1} , with S = 1 {\displaystyle S=1} representing the perfect alignment of all molecules along the director and S = 0 {\displaystyle S=0} representing the complete random alignment (isotropic) of all molecules with respect to the director; the S = 1 / 2 {\displaystyle S=-1/2} case indicates that all molecules are aligned perpendicular to the director axis although such nematics are rare or hard to synthesize.

See also

References

  1. ^ De Gennes, P. G. (1969). Phenomenology of short-range-order effects in the isotropic phase of nematic materials. Physics Letters A , 30 (8), 454-455.
  2. ^ a b De Gennes, P. G., & Prost, J. (1993). The physics of liquid crystals (No. 83). Oxford university press.
  3. ^ Mottram, N. J., & Newton, C. J. (2014). Introduction to Q-tensor theory. arXiv preprint arXiv:1409.3542.
  4. ^ Kleman, M., & Lavrentovich, O. D. (Eds.). (2003). Soft matter physics: an introduction. New York, NY: Springer New York.