Tannery's theorem

Mathematical analysis theorem

In mathematical analysis, Tannery's theorem gives sufficient conditions for the interchanging of the limit and infinite summation operations. It is named after Jules Tannery.[1]

Statement

Let S n = k = 0 a k ( n ) {\displaystyle S_{n}=\sum _{k=0}^{\infty }a_{k}(n)} and suppose that lim n a k ( n ) = b k {\displaystyle \lim _{n\to \infty }a_{k}(n)=b_{k}} . If | a k ( n ) | M k {\displaystyle |a_{k}(n)|\leq M_{k}} and k = 0 M k < {\displaystyle \sum _{k=0}^{\infty }M_{k}<\infty } , then lim n S n = k = 0 b k {\displaystyle \lim _{n\to \infty }S_{n}=\sum _{k=0}^{\infty }b_{k}} .[2][3]

Proofs

Tannery's theorem follows directly from Lebesgue's dominated convergence theorem applied to the sequence space 1 {\displaystyle \ell ^{1}} .

An elementary proof can also be given.[3]

Example

Tannery's theorem can be used to prove that the binomial limit and the infinite series characterizations of the exponential e x {\displaystyle e^{x}} are equivalent. Note that

lim n ( 1 + x n ) n = lim n k = 0 n ( n k ) x k n k . {\displaystyle \lim _{n\to \infty }\left(1+{\frac {x}{n}}\right)^{n}=\lim _{n\to \infty }\sum _{k=0}^{n}{n \choose k}{\frac {x^{k}}{n^{k}}}.}

Define a k ( n ) = ( n k ) x k n k {\displaystyle a_{k}(n)={n \choose k}{\frac {x^{k}}{n^{k}}}} . We have that | a k ( n ) | | x | k k ! {\displaystyle |a_{k}(n)|\leq {\frac {|x|^{k}}{k!}}} and that k = 0 | x | k k ! = e | x | < {\displaystyle \sum _{k=0}^{\infty }{\frac {|x|^{k}}{k!}}=e^{|x|}<\infty } , so Tannery's theorem can be applied and

lim n k = 0 ( n k ) x k n k = k = 0 lim n ( n k ) x k n k = k = 0 x k k ! = e x . {\displaystyle \lim _{n\to \infty }\sum _{k=0}^{\infty }{n \choose k}{\frac {x^{k}}{n^{k}}}=\sum _{k=0}^{\infty }\lim _{n\to \infty }{n \choose k}{\frac {x^{k}}{n^{k}}}=\sum _{k=0}^{\infty }{\frac {x^{k}}{k!}}=e^{x}.}

References

  1. ^ Loya, Paul (2018). Amazing and Aesthetic Aspects of Analysis. Springer. ISBN 9781493967957.
  2. ^ Ismail, Mourad E. H.; Koelink, Erik, eds. (2005). Theory and Applications of Special Functions: A Volume Dedicated to Mizan Rahman. New York: Springer. p. 448. ISBN 9780387242330.
  3. ^ a b Hofbauer, Josef (2002). "A Simple Proof of 1 + 1 / 2 2 + 1 / 3 2 + = π 2 6 {\displaystyle 1+1/2^{2}+1/3^{2}+\cdots ={\frac {\pi ^{2}}{6}}} and Related Identities". The American Mathematical Monthly. 109 (2): 196–200. doi:10.2307/2695334. JSTOR 2695334.