Vacuum Rabi oscillation

Damped oscillation in quantum optics

A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity.[1][2][3] Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.

Mathematical treatment

A mathematical description of vacuum Rabi oscillation begins with the Jaynes–Cummings model, which describes the interaction between a single mode of a quantized field and a two level system inside an optical cavity. The Hamiltonian for this model in the rotating wave approximation is

H ^ JC = ω a ^ a ^ + ω 0 σ ^ z 2 + g ( a ^ σ ^ + + a ^ σ ^ ) {\displaystyle {\hat {H}}_{\text{JC}}=\hbar \omega {\hat {a}}^{\dagger }{\hat {a}}+\hbar \omega _{0}{\frac {{\hat {\sigma }}_{z}}{2}}+\hbar g\left({\hat {a}}{\hat {\sigma }}_{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}\right)}

where σ z ^ {\displaystyle {\hat {\sigma _{z}}}} is the Pauli z spin operator for the two eigenstates | e {\displaystyle |e\rangle } and | g {\displaystyle |g\rangle } of the isolated two level system separated in energy by ω 0 {\displaystyle \hbar \omega _{0}} ; σ ^ + = | e g | {\displaystyle {\hat {\sigma }}_{+}=|e\rangle \langle g|} and σ ^ = | g e | {\displaystyle {\hat {\sigma }}_{-}=|g\rangle \langle e|} are the raising and lowering operators of the two level system; a ^ {\displaystyle {\hat {a}}^{\dagger }} and a ^ {\displaystyle {\hat {a}}} are the creation and annihilation operators for photons of energy ω {\displaystyle \hbar \omega } in the cavity mode; and

g = d E ^ ω 2 ϵ 0 V {\displaystyle g={\frac {\mathbf {d} \cdot {\hat {\mathcal {E}}}}{\hbar }}{\sqrt {\frac {\hbar \omega }{2\epsilon _{0}V}}}}

is the strength of the coupling between the dipole moment d {\displaystyle \mathbf {d} } of the two level system and the cavity mode with volume V {\displaystyle V} and electric field polarized along E ^ {\displaystyle {\hat {\mathcal {E}}}} . [4] The energy eigenvalues and eigenstates for this model are

E ± ( n ) = ω ( n + 1 2 ) ± 2 4 g 2 ( n + 1 ) + δ 2 = ω n ± {\displaystyle E_{\pm }(n)=\hbar \omega \left(n+{\frac {1}{2}}\right)\pm {\frac {\hbar }{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}=\hbar \omega _{n}^{\pm }}
| n , + = cos ( θ n ) | g , n + 1 + sin ( θ n ) | e , n {\displaystyle |n,+\rangle =\cos \left(\theta _{n}\right)|g,n+1\rangle +\sin \left(\theta _{n}\right)|e,n\rangle }
| n , = sin ( θ n ) | g , n + 1 cos ( θ n ) | e , n {\displaystyle |n,-\rangle =\sin \left(\theta _{n}\right)|g,n+1\rangle -\cos \left(\theta _{n}\right)|e,n\rangle }

where δ = ω 0 ω {\displaystyle \delta =\omega _{0}-\omega } is the detuning, and the angle θ n {\displaystyle \theta _{n}} is defined as

θ n = tan 1 ( g n + 1 δ ) . {\displaystyle \theta _{n}=\tan ^{-1}\left({\frac {g{\sqrt {n+1}}}{\delta }}\right).}

Given the eigenstates of the system, the time evolution operator can be written down in the form

e i H ^ JC t / = | n , ± | n , ± | n , ± n , ± | e i H ^ JC t / | n , ± n , ± | =   e i ( ω ω 0 2 ) t | g , 0 g , 0 |       + n = 0 e i ω n + t ( cos θ n | g , n + 1 + sin θ n | e , n ) ( cos θ n g , n + 1 | + sin θ n e , n | )       + n = 0 e i ω n t ( sin θ n | g , n + 1 + cos θ n | e , n ) ( sin θ n g , n + 1 | + cos θ n e , n | ) . {\displaystyle {\begin{aligned}e^{-i{\hat {H}}_{\text{JC}}t/\hbar }&=\sum _{|n,\pm \rangle }\sum _{|n',\pm \rangle }|n,\pm \rangle \langle n,\pm |e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|n',\pm \rangle \langle n',\pm |\\&=~e^{i(\omega -{\frac {\omega _{0}}{2}})t}|g,0\rangle \langle g,0|\\&~~~+\sum _{n=0}^{\infty }{e^{-i\omega _{n}^{+}t}(\cos {\theta _{n}}|g,n+1\rangle +\sin {\theta _{n}}|e,n\rangle )(\cos {\theta _{n}}\langle g,n+1|+\sin {\theta _{n}}\langle e,n|)}\\&~~~+\sum _{n=0}^{\infty }{e^{-i\omega _{n}^{-}t}(-\sin {\theta _{n}}|g,n+1\rangle +\cos {\theta _{n}}|e,n\rangle )(-\sin {\theta _{n}}\langle g,n+1|+\cos {\theta _{n}}\langle e,n|)}\\\end{aligned}}.}

If the system starts in the state | g , n + 1 {\displaystyle |g,n+1\rangle } , where the atom is in the ground state of the two level system and there are n + 1 {\displaystyle n+1} photons in the cavity mode, the application of the time evolution operator yields

e i H ^ JC t / | g , n + 1 = ( e i ω n + t ( cos 2 ( θ n ) | g , n + 1 + sin θ n cos θ n | e , n ) + e i ω n t ( sin 2 ( θ n ) | g , n + 1 sin θ n cos θ n | e , n ) = ( e i ω n + t + e i ω n t ) cos ( 2 θ n ) | g , n + 1 + ( e i ω n + t e i ω n t ) sin ( 2 θ n ) | e , n = e i ω c ( n + 1 2 ) [ cos ( t 2 4 g 2 ( n + 1 ) + δ 2 ) [ δ 2 4 g 2 ( n + 1 ) δ 2 + 4 g 2 ( n + 1 ) ] | g , n + 1 + sin ( t 2 4 g 2 ( n + 1 ) + δ 2 ) [ 8 δ 2 g 2 ( n + 1 ) δ 2 + 4 g 2 ( n + 1 ) ] | e , n ] . {\displaystyle {\begin{aligned}e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|g,n+1\rangle &=(e^{-i\omega _{n}^{+}t}(\cos ^{2}{(\theta _{n})}|g,n+1\rangle +\sin {\theta _{n}}\cos {\theta _{n}}|e,n\rangle )+e^{-i\omega _{n}^{-}t}(-\sin ^{2}{(\theta _{n})}|g,n+1\rangle -\sin {\theta _{n}}\cos {\theta _{n}}|e,n\rangle )\\&=(e^{-i\omega _{n}^{+}t}+e^{-i\omega _{n}^{-}t})\cos {(2\theta _{n})}|g,n+1\rangle +(e^{-i\omega _{n}^{+}t}-e^{-i\omega _{n}^{-}t})\sin {(2\theta _{n})}|e,n\rangle \\&=e^{-i\omega _{c}(n+{\frac {1}{2}})}{\Biggr [}\cos {{\biggr (}{\frac {t}{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}{\biggr )}}{\biggr [}{\frac {\delta ^{2}-4g^{2}(n+1)}{\delta ^{2}+4g^{2}(n+1)}}{\biggr ]}|g,n+1\rangle +\sin {{\biggr (}{\frac {t}{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}{\biggr )}}{\biggr [}{\frac {8\delta ^{2}g^{2}(n+1)}{\delta ^{2}+4g^{2}(n+1)}}{\biggr ]}|e,n\rangle {\Biggr ]}\end{aligned}}.}

The probability that the two level system is in the excited state | e , n {\displaystyle |e,n\rangle } as a function of time t {\displaystyle t} is then

P e ( t ) = | e , n | e i H ^ JC t / | g , n + 1 | 2 = sin 2 ( t 2 4 g 2 ( n + 1 ) + δ 2 ) [ 8 δ 2 g 2 ( n + 1 ) δ 2 + 4 g 2 ( n + 1 ) ] = 4 g 2 ( n + 1 ) Ω n 2 sin 2 ( Ω n t 2 ) {\displaystyle {\begin{aligned}P_{e}(t)&=|\langle e,n|e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|g,n+1\rangle |^{2}\\&=\sin ^{2}{{\biggr (}{\frac {t}{2}}{\sqrt {4g^{2}(n+1)+\delta ^{2}}}{\biggr )}}{\biggr [}{\frac {8\delta ^{2}g^{2}(n+1)}{\delta ^{2}+4g^{2}(n+1)}}{\biggr ]}\\&={\frac {4g^{2}(n+1)}{\Omega _{n}^{2}}}\sin ^{2}{{\bigr (}{\frac {\Omega _{n}t}{2}}{\bigr )}}\end{aligned}}}

where Ω n = 4 g 2 ( n + 1 ) + δ 2 {\displaystyle \Omega _{n}={\sqrt {4g^{2}(n+1)+\delta ^{2}}}} is identified as the Rabi frequency. For the case that there is no electric field in the cavity, that is, the photon number n {\displaystyle n} is zero, the Rabi frequency becomes Ω 0 = 4 g 2 + δ 2 {\displaystyle \Omega _{0}={\sqrt {4g^{2}+\delta ^{2}}}} . Then, the probability that the two level system goes from its ground state to its excited state as a function of time t {\displaystyle t} is

P e ( t ) = 4 g 2 Ω 0 2 sin 2 ( Ω 0 t 2 ) . {\displaystyle P_{e}(t)={\frac {4g^{2}}{\Omega _{0}^{2}}}\sin ^{2}{{\bigr (}{\frac {\Omega _{0}t}{2}}{\bigr )}.}}

For a cavity that admits a single mode perfectly resonant with the energy difference between the two energy levels, the detuning δ {\displaystyle \delta } vanishes, and P e ( t ) {\displaystyle P_{e}(t)} becomes a squared sinusoid with unit amplitude and period 2 π g . {\displaystyle {\frac {2\pi }{g}}.}

Generalization to N atoms

The situation in which N {\displaystyle N} two level systems are present in a single-mode cavity is described by the Tavis–Cummings model [5] , which has Hamiltonian

H ^ JC = ω a ^ a ^ + j = 1 N ω 0 σ ^ j z 2 + g j ( a ^ σ ^ j + + a ^ σ ^ j ) . {\displaystyle {\hat {H}}_{\text{JC}}=\hbar \omega {\hat {a}}^{\dagger }{\hat {a}}+\sum _{j=1}^{N}{\hbar \omega _{0}{\frac {{\hat {\sigma }}_{j}^{z}}{2}}+\hbar g_{j}\left({\hat {a}}{\hat {\sigma }}_{j}^{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{j}^{-}\right)}.}

Under the assumption that all two level systems have equal individual coupling strength g {\displaystyle g} to the field, the ensemble as a whole will have enhanced coupling strength g N = g N {\displaystyle g_{N}=g{\sqrt {N}}} . As a result, the vacuum Rabi splitting is correspondingly enhanced by a factor of N {\displaystyle {\sqrt {N}}} .[6]

See also

References and notes

  1. ^ Hiroyuki Yokoyama & Ujihara K (1995). Spontaneous emission and laser oscillation in microcavities. Boca Raton: CRC Press. p. 6. ISBN 0-8493-3786-0.
  2. ^ Kerry Vahala (2004). Optical microcavities. Singapore: World Scientific. p. 368. ISBN 981-238-775-7.
  3. ^ Rodney Loudon (2000). The quantum theory of light. Oxford UK: Oxford University Press. p. 172. ISBN 0-19-850177-3.
  4. ^ Marlan O. Scully, M. Suhail Zubairy (1997). Quantum Optics. Cambridge University Press. p. 5. ISBN 0521435951.
  5. ^ Schine, Nathan (2019). Quantum Hall Physics with Photons (PhD). University of Chicago.
  6. ^ Mark Fox (2006). Quantum Optics: An Introduction. Boca Raton: OUP Oxford. p. 208. ISBN 0198566735.