Vector fields in cylindrical and spherical coordinates

Vector field representation in 3D curvilinear coordinate systems
Spherical coordinates (r, θ, φ) as commonly used in physics: radial distance r, polar angle θ (theta), and azimuthal angle φ (phi). The symbol ρ (rho) is often used instead of r.

Note: This page uses common physics notation for spherical coordinates, in which θ {\displaystyle \theta } is the angle between the z axis and the radius vector connecting the origin to the point in question, while ϕ {\displaystyle \phi } is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.[1]

Cylindrical coordinate system

Vector fields

Vectors are defined in cylindrical coordinates by (ρ, φ, z), where

  • ρ is the length of the vector projected onto the xy-plane,
  • φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),
  • z is the regular z-coordinate.

(ρ, φ, z) is given in Cartesian coordinates by:

[ ρ ϕ z ] = [ x 2 + y 2 arctan ( y / x ) z ] ,       0 ϕ < 2 π , {\displaystyle {\begin{bmatrix}\rho \\\phi \\z\end{bmatrix}}={\begin{bmatrix}{\sqrt {x^{2}+y^{2}}}\\\operatorname {arctan} (y/x)\\z\end{bmatrix}},\ \ \ 0\leq \phi <2\pi ,}

or inversely by: [ x y z ] = [ ρ cos ϕ ρ sin ϕ z ] . {\displaystyle {\begin{bmatrix}x\\y\\z\end{bmatrix}}={\begin{bmatrix}\rho \cos \phi \\\rho \sin \phi \\z\end{bmatrix}}.}

Any vector field can be written in terms of the unit vectors as: A = A x x ^ + A y y ^ + A z z ^ = A ρ ρ ^ + A ϕ ϕ ^ + A z z ^ {\displaystyle \mathbf {A} =A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} =A_{\rho }\mathbf {\hat {\rho }} +A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}\mathbf {\hat {z}} } The cylindrical unit vectors are related to the Cartesian unit vectors by: [ ρ ^ ϕ ^ z ^ ] = [ cos ϕ sin ϕ 0 sin ϕ cos ϕ 0 0 0 1 ] [ x ^ y ^ z ^ ] {\displaystyle {\begin{bmatrix}\mathbf {\hat {\rho }} \\{\boldsymbol {\hat {\phi }}}\\\mathbf {\hat {z}} \end{bmatrix}}={\begin{bmatrix}\cos \phi &\sin \phi &0\\-\sin \phi &\cos \phi &0\\0&0&1\end{bmatrix}}{\begin{bmatrix}\mathbf {\hat {x}} \\\mathbf {\hat {y}} \\\mathbf {\hat {z}} \end{bmatrix}}}

Note: the matrix is an orthogonal matrix, that is, its inverse is simply its transpose.

Time derivative of a vector field

To find out how the vector field A changes in time, the time derivatives should be calculated. For this purpose Newton's notation will be used for the time derivative ( A ˙ {\displaystyle {\dot {\mathbf {A} }}} ). In Cartesian coordinates this is simply: A ˙ = A ˙ x x ^ + A ˙ y y ^ + A ˙ z z ^ {\displaystyle {\dot {\mathbf {A} }}={\dot {A}}_{x}{\hat {\mathbf {x} }}+{\dot {A}}_{y}{\hat {\mathbf {y} }}+{\dot {A}}_{z}{\hat {\mathbf {z} }}}

However, in cylindrical coordinates this becomes: A ˙ = A ˙ ρ ρ ^ + A ρ ρ ^ ˙ + A ˙ ϕ ϕ ^ + A ϕ ϕ ^ ˙ + A ˙ z z ^ + A z z ^ ˙ {\displaystyle {\dot {\mathbf {A} }}={\dot {A}}_{\rho }{\hat {\boldsymbol {\rho }}}+A_{\rho }{\dot {\hat {\boldsymbol {\rho }}}}+{\dot {A}}_{\phi }{\hat {\boldsymbol {\phi }}}+A_{\phi }{\dot {\hat {\boldsymbol {\phi }}}}+{\dot {A}}_{z}{\hat {\boldsymbol {z}}}+A_{z}{\dot {\hat {\boldsymbol {z}}}}}

The time derivatives of the unit vectors are needed. They are given by: ρ ^ ˙ = ϕ ˙ ϕ ^ ϕ ^ ˙ = ϕ ˙ ρ ^ z ^ ˙ = 0 {\displaystyle {\begin{aligned}{\dot {\hat {\mathbf {\rho } }}}&={\dot {\phi }}{\hat {\boldsymbol {\phi }}}\\{\dot {\hat {\boldsymbol {\phi }}}}&=-{\dot {\phi }}{\hat {\mathbf {\rho } }}\\{\dot {\hat {\mathbf {z} }}}&=0\end{aligned}}}

So the time derivative simplifies to: A ˙ = ρ ^ ( A ˙ ρ A ϕ ϕ ˙ ) + ϕ ^ ( A ˙ ϕ + A ρ ϕ ˙ ) + z ^ A ˙ z {\displaystyle {\dot {\mathbf {A} }}={\hat {\boldsymbol {\rho }}}\left({\dot {A}}_{\rho }-A_{\phi }{\dot {\phi }}\right)+{\hat {\boldsymbol {\phi }}}\left({\dot {A}}_{\phi }+A_{\rho }{\dot {\phi }}\right)+{\hat {\mathbf {z} }}{\dot {A}}_{z}}

Second time derivative of a vector field

The second time derivative is of interest in physics, as it is found in equations of motion for classical mechanical systems. The second time derivative of a vector field in cylindrical coordinates is given by: A ¨ = ρ ^ ( A ¨ ρ A ϕ ϕ ¨ 2 A ˙ ϕ ϕ ˙ A ρ ϕ ˙ 2 ) + ϕ ^ ( A ¨ ϕ + A ρ ϕ ¨ + 2 A ˙ ρ ϕ ˙ A ϕ ϕ ˙ 2 ) + z ^ A ¨ z {\displaystyle \mathbf {\ddot {A}} =\mathbf {\hat {\rho }} \left({\ddot {A}}_{\rho }-A_{\phi }{\ddot {\phi }}-2{\dot {A}}_{\phi }{\dot {\phi }}-A_{\rho }{\dot {\phi }}^{2}\right)+{\boldsymbol {\hat {\phi }}}\left({\ddot {A}}_{\phi }+A_{\rho }{\ddot {\phi }}+2{\dot {A}}_{\rho }{\dot {\phi }}-A_{\phi }{\dot {\phi }}^{2}\right)+\mathbf {\hat {z}} {\ddot {A}}_{z}}

To understand this expression, A is substituted for P, where P is the vector (ρ, φ, z).

This means that A = P = ρ ρ ^ + z z ^ {\displaystyle \mathbf {A} =\mathbf {P} =\rho \mathbf {\hat {\rho }} +z\mathbf {\hat {z}} } .

After substituting, the result is given: P ¨ = ρ ^ ( ρ ¨ ρ ϕ ˙ 2 ) + ϕ ^ ( ρ ϕ ¨ + 2 ρ ˙ ϕ ˙ ) + z ^ z ¨ {\displaystyle {\ddot {\mathbf {P} }}=\mathbf {\hat {\rho }} \left({\ddot {\rho }}-\rho {\dot {\phi }}^{2}\right)+{\boldsymbol {\hat {\phi }}}\left(\rho {\ddot {\phi }}+2{\dot {\rho }}{\dot {\phi }}\right)+\mathbf {\hat {z}} {\ddot {z}}}

In mechanics, the terms of this expression are called:

ρ ¨ ρ ^ {\displaystyle {\ddot {\rho }}\mathbf {\hat {\rho }} } central outward acceleration
ρ ϕ ˙ 2 ρ ^ {\displaystyle -\rho {\dot {\phi }}^{2}\mathbf {\hat {\rho }} } centripetal acceleration
ρ ϕ ¨ ϕ ^ {\displaystyle \rho {\ddot {\phi }}{\boldsymbol {\hat {\phi }}}} angular acceleration
2 ρ ˙ ϕ ˙ ϕ ^ {\displaystyle 2{\dot {\rho }}{\dot {\phi }}{\boldsymbol {\hat {\phi }}}} Coriolis effect
z ¨ z ^ {\displaystyle {\ddot {z}}\mathbf {\hat {z}} } z-acceleration

Spherical coordinate system

Vector fields

Vectors are defined in spherical coordinates by (r, θ, φ), where

  • r is the length of the vector,
  • θ is the angle between the positive Z-axis and the vector in question (0 ≤ θπ), and
  • φ is the angle between the projection of the vector onto the xy-plane and the positive X-axis (0 ≤ φ < 2π).

(r, θ, φ) is given in Cartesian coordinates by: [ r θ ϕ ] = [ x 2 + y 2 + z 2 arccos ( z / x 2 + y 2 + z 2 ) arctan ( y / x ) ] ,       0 θ π ,       0 ϕ < 2 π , {\displaystyle {\begin{bmatrix}r\\\theta \\\phi \end{bmatrix}}={\begin{bmatrix}{\sqrt {x^{2}+y^{2}+z^{2}}}\\\arccos(z/{\sqrt {x^{2}+y^{2}+z^{2}}})\\\arctan(y/x)\end{bmatrix}},\ \ \ 0\leq \theta \leq \pi ,\ \ \ 0\leq \phi <2\pi ,} or inversely by: [ x y z ] = [ r sin θ cos ϕ r sin θ sin ϕ r cos θ ] . {\displaystyle {\begin{bmatrix}x\\y\\z\end{bmatrix}}={\begin{bmatrix}r\sin \theta \cos \phi \\r\sin \theta \sin \phi \\r\cos \theta \end{bmatrix}}.}

Any vector field can be written in terms of the unit vectors as: A = A x x ^ + A y y ^ + A z z ^ = A r r ^ + A θ θ ^ + A ϕ ϕ ^ {\displaystyle \mathbf {A} =A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} =A_{r}{\boldsymbol {\hat {r}}}+A_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}} The spherical unit vectors are related to the Cartesian unit vectors by: [ r ^ θ ^ ϕ ^ ] = [ sin θ cos ϕ sin θ sin ϕ cos θ cos θ cos ϕ cos θ sin ϕ sin θ sin ϕ cos ϕ 0 ] [ x ^ y ^ z ^ ] {\displaystyle {\begin{bmatrix}{\boldsymbol {\hat {r}}}\\{\boldsymbol {\hat {\theta }}}\\{\boldsymbol {\hat {\phi }}}\end{bmatrix}}={\begin{bmatrix}\sin \theta \cos \phi &\sin \theta \sin \phi &\cos \theta \\\cos \theta \cos \phi &\cos \theta \sin \phi &-\sin \theta \\-\sin \phi &\cos \phi &0\end{bmatrix}}{\begin{bmatrix}\mathbf {\hat {x}} \\\mathbf {\hat {y}} \\\mathbf {\hat {z}} \end{bmatrix}}}

Note: the matrix is an orthogonal matrix, that is, its inverse is simply its transpose.

The Cartesian unit vectors are thus related to the spherical unit vectors by: [ x ^ y ^ z ^ ] = [ sin θ cos ϕ cos θ cos ϕ sin ϕ sin θ sin ϕ cos θ sin ϕ cos ϕ cos θ sin θ 0 ] [ r ^ θ ^ ϕ ^ ] {\displaystyle {\begin{bmatrix}\mathbf {\hat {x}} \\\mathbf {\hat {y}} \\\mathbf {\hat {z}} \end{bmatrix}}={\begin{bmatrix}\sin \theta \cos \phi &\cos \theta \cos \phi &-\sin \phi \\\sin \theta \sin \phi &\cos \theta \sin \phi &\cos \phi \\\cos \theta &-\sin \theta &0\end{bmatrix}}{\begin{bmatrix}{\boldsymbol {\hat {r}}}\\{\boldsymbol {\hat {\theta }}}\\{\boldsymbol {\hat {\phi }}}\end{bmatrix}}}


Time derivative of a vector field

To find out how the vector field A changes in time, the time derivatives should be calculated. In Cartesian coordinates this is simply: A ˙ = A ˙ x x ^ + A ˙ y y ^ + A ˙ z z ^ {\displaystyle \mathbf {\dot {A}} ={\dot {A}}_{x}\mathbf {\hat {x}} +{\dot {A}}_{y}\mathbf {\hat {y}} +{\dot {A}}_{z}\mathbf {\hat {z}} } However, in spherical coordinates this becomes: A ˙ = A ˙ r r ^ + A r r ^ ˙ + A ˙ θ θ ^ + A θ θ ^ ˙ + A ˙ ϕ ϕ ^ + A ϕ ϕ ^ ˙ {\displaystyle \mathbf {\dot {A}} ={\dot {A}}_{r}{\boldsymbol {\hat {r}}}+A_{r}{\boldsymbol {\dot {\hat {r}}}}+{\dot {A}}_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\theta }{\boldsymbol {\dot {\hat {\theta }}}}+{\dot {A}}_{\phi }{\boldsymbol {\hat {\phi }}}+A_{\phi }{\boldsymbol {\dot {\hat {\phi }}}}} The time derivatives of the unit vectors are needed. They are given by: r ^ ˙ = θ ˙ θ ^ + ϕ ˙ sin θ ϕ ^ θ ^ ˙ = θ ˙ r ^ + ϕ ˙ cos θ ϕ ^ ϕ ^ ˙ = ϕ ˙ sin θ r ^ ϕ ˙ cos θ θ ^ {\displaystyle {\begin{aligned}{\boldsymbol {\dot {\hat {r}}}}&={\dot {\theta }}{\boldsymbol {\hat {\theta }}}+{\dot {\phi }}\sin \theta {\boldsymbol {\hat {\phi }}}\\{\boldsymbol {\dot {\hat {\theta }}}}&=-{\dot {\theta }}{\boldsymbol {\hat {r}}}+{\dot {\phi }}\cos \theta {\boldsymbol {\hat {\phi }}}\\{\boldsymbol {\dot {\hat {\phi }}}}&=-{\dot {\phi }}\sin \theta {\boldsymbol {\hat {r}}}-{\dot {\phi }}\cos \theta {\boldsymbol {\hat {\theta }}}\end{aligned}}} Thus the time derivative becomes: A ˙ = r ^ ( A ˙ r A θ θ ˙ A ϕ ϕ ˙ sin θ ) + θ ^ ( A ˙ θ + A r θ ˙ A ϕ ϕ ˙ cos θ ) + ϕ ^ ( A ˙ ϕ + A r ϕ ˙ sin θ + A θ ϕ ˙ cos θ ) {\displaystyle \mathbf {\dot {A}} ={\boldsymbol {\hat {r}}}\left({\dot {A}}_{r}-A_{\theta }{\dot {\theta }}-A_{\phi }{\dot {\phi }}\sin \theta \right)+{\boldsymbol {\hat {\theta }}}\left({\dot {A}}_{\theta }+A_{r}{\dot {\theta }}-A_{\phi }{\dot {\phi }}\cos \theta \right)+{\boldsymbol {\hat {\phi }}}\left({\dot {A}}_{\phi }+A_{r}{\dot {\phi }}\sin \theta +A_{\theta }{\dot {\phi }}\cos \theta \right)}

See also

References

  1. ^ Wolfram Mathworld, spherical coordinates