Profondeur d'impact

Le physicien Isaac Newton a d'abord développé l'idée de profondeur d'impact pour obtenir des approximations pour la profondeur des cratères d'impact de projectiles se déplaçant à des vitesses élevées.

Approximation de Newton

L'approximation de Newton utilise un raisonnement basé uniquement sur la quantité de mouvement. L'énergie cinétique n'est pas prise en compte et rien ne dit ni comment ni où elle se dissipe.

Il y a deux idées de base. Premièrement, l'impacteur a une quantité de mouvement donnée, et il s'arrête quand celle-ci a été entièrement transférée à une autre masse, ce qui se produit (approximativement) lorsque la masse de matériau de la cible traversé par l'impacteur atteint la masse de l'impacteur, comme dans le cadre d'un choc élastique de deux masses égales. Deuxièmement, dans le cas d'un impacteur à grande vitesse, la cohésion du matériau de la cible peut être négligée, de sorte que le transfert de quantité de mouvement à la cible n'a lieu qu'au niveau de la section frontale de l'impacteur, et donc que le volume de matériau de la cible déplacé est simplement le produit de la section de l'impacteur par sa distance de pénétration dans la cible, tandis que la masse déplacée est obtenue en multipliant ce volume par la masse volumique de la cible.

On obtient donc l'arrêt lorsque l'égalité est réalisée entre d'une part le produit de la masse volumique, de la section frontale, et de la longueur du projectile, et d'autre part le produit de la masse volumique de la cible, de la section frontale du projectile et de sa distance de pénétration dans la cible. La section frontale s'élimine du calcul, et on obtient la distance de pénétration du projectile comme sa propre longueur multipliée par sa densité relative par rapport à celle de la cible.

Cette approche ne vaut que pour un élément de frappe émoussé (sans forme aérodynamique) et un matériau cible sans cohésion à la vitesse de frappe. Ceci est généralement vrai, si la vitesse de frappe est beaucoup plus élevée que la vitesse du son dans le matériau cible. À des vitesses élevées telles que celle-ci, la plupart des matériaux commencent à se comporter comme des fluides. Il est en outre important que le projectile conserve une forme compacte lors de l'impact (il ne s'étale pas et sa section frontale reste approximativement constante, il ne perd pas de matière).

Applications

Même si l'approximation de Newton n'est pas parfaitement réalisée, elle indique que la distance de pénétration d'un projectile s'accroit avec sa longueur et avec densité du matériau dont il est constitué. Par suite :

  • les projectiles doivent être faits de matière ayant une forte densité, comme l'uranium (19,1 g/cm3) ou le plomb (11,3 g/cm3). Selon l'approximation de Newton, un projectile constitué d'uranium perforera à peu près 2,5 fois sa propre longueur de blindage d'acier.
  • L'efficacité d'un obus flèche s'accroit avec sa longueur.
  • De même la puissance d'une charge creuse s'explique par sa capacité à générer un long jet de métal.
  • Inversement un blindage réactif cherche à fragmenter et raccourcir le projectile, nuisant à sa capacité de pénétration.
  • Bunker buster. Un impacteur massif peut être utilisé, à la place d'une ogive explosive, pour pénétrer les bunkers. Selon l'approximation de Newton, un projectile d'uranium de 1 m de longueur, frappant à grande vitesse transpercerait 6 m de roche (densité de 3 g/cm3), avant de s'immobiliser. Un tel impacteur, à une vitesse de 5 à 15 km/s, possède plus d'énergie cinétique que la même masse d'explosif.
  • Une autre application est l'estimation de la taille minimale pour qu'une météorite traverse l'atmosphère et touche le sol à pleine vitesse. En se basant sur la pression atmosphérique, l'atmosphère est équivalente à une épaisseur de 10 m d'eau. La glace ayant environ la même densité que l'eau, un cube de glace de l'espace se déplaçant à 15 km/s doit avoir une arête de 10 m pour atteindre la surface de la terre à grande vitesse. Un cube de glace plus petit sera arrêté à mi-atmosphère et explosera. Un cube de glace d'une arête de 50 m ou plus, toutefois, peut également être arrêté à la mi-atmosphère, pour autant qu'il entre dans celle-ci à un angle très faible (il doit donc traverser une très grande épaisseur d'atmosphère). L'événement de la Toungouska est parfois expliqué de cette façon. Une météorite de fer d'un diamètre de 1,3 m traverserait l'atmosphère, une météorite plus petite serait arrêtée dans l'air, et finirait sa chute grâce à l'attraction gravitationnelle. La pierre noire, par exemple, avec un diamètre de 0,5 m entrerait dans cette catégorie.

Voir aussi

Liens externes

  • Impact Earth Impact Effects Program


  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Impact depth » (voir la liste des auteurs).
  • icône décorative Portail de la physique
  • icône décorative Portail de l’astronomie