Teoria de Regge

Mecânica quântica
Δ x Δ p 2 {\displaystyle {\Delta x}\,{\Delta p}\geq {\frac {\hbar }{2}}}
Princípio da Incerteza
Introdução à mecânica quântica

Formulação matemática

Introdução
Mecânica clássica
Antiga teoria quântica
Interferência · Notação Bra-ket
Hamiltoniano
Conceitos fundamentais
Estado quântico · Função de onda
Superposição · Emaranhamento

· Incerteza
Efeito do observador
Exclusão · Dualidade
Decoerência · Teorema de Ehrenfest · Tunelamento

Experiências
Experiência de dupla fenda
Experimento de Davisson–Germer
Experimento de Stern-Gerlach
Experiência da desigualdade de Bell
Experiência de Popper
Gato de Schrödinger
Problema de Elitzur-Vaidman
Borracha quântica
Representações
Representação de Schrödinger
Representação de Heisenberg
Representação de Dirac
Mecânica matricial
Integração funcional
Equações
Equação de Schrödinger
Equação de Pauli
Equação de Klein–Gordon
Equação de Dirac
Interpretações
Copenhague · Conjunta
Teoria das variáveis ocultas · Transacional
Muitos mundos · Histórias consistentes
Lógica quântica · Interpretação de Bohm
Estocástica · Mecânica quântica emergente
Tópicos avançados
Teoria quântica de campos
Gravitação quântica
Teoria de tudo
Mecânica quântica relativística
Teoria de campo de Qubits
Cientistas
* Bell* Blackett* Bogolyubov* Bohm* Bohr* Bardeen* Born* Bose* de Broglie* Compton* Cooper* Dirac* Davisson * Duarte* Ehrenfest* Einstein* Everett* Feynman* Hertz* Heisenberg* Jordan* Klitzing* Kusch* Kramers* von Neumann* Pauli* Lamb* Laue* Laughlin* Moseley* Millikan* Onnes* Planck* Raman* Richardson* Rydberg* Schrödinger* Störmer* Shockley* Schrieffer* Shull* Sommerfeld* Thomson* Tsui* Ward* Wien* Wigner* Zeeman* Zeilinger* Zurek
Esta caixa:
  • ver
  • discutir
  • editar

Em física quântica, a Teoria de Regge é o estudo das propriedades analíticas de dispersão como função de momento angular. Por exemplo spin electrónico (elétrons) podem apresentar movimento de rotação em dois sentidos diferentes, por isso é que dois elétrons podem ocupar o mesmo nível ao mesmo tempo, ou 4 ou 8… . Elétrons e Quarks todos possuem Spin de 1/2 e Grávitons Spin 2[1]. Aplicando a matemática Função Beta foi possível explicar a presença dessas linhas retas, como sendo filamentos[2]. Assim nasceu a primeira teoria da corda chamada Primeira-quantificação da corda que se dividiram em cordas abertas e cordas fechadas. Cordas abertas têm menos modos de vibração que cordas fechadas, pois possuem as pontas livres, na corda fechada para manter as pontas fixas é necessário mais modos de vibração[3]. Esta teoria não-relativística foi desenvolvido por Tullio Regge, em 1957.

Pólos de Regge

O exemplo mais simples dos pólos de Regge é fornecido pela abordagem mecânica quântica do potencial de Coulomb V ( r ) = e 2 / ( 4 π ϵ 0 r ) {\displaystyle V(r)=-e^{2}/(4\pi \epsilon _{0}r)} ou, diferentemente, pelo tratamento mecânico quântico da ligação ou dispersão de um elétron de massa e carga elétrica e {\displaystyle -e} de um próton de massa M {\displaystyle M} e carga + e {\displaystyle +e} . A energia E {\displaystyle E} da ligação do elétron ao próton é negativa, enquanto que, para a dispersão, a energia é positiva. A fórmula para a energia de ligação é a expressão:

l l ( E ) = n + g ( E ) , g ( E ) = 1 + i π e 2 4 π ϵ 0 h ( 2 m / E ) 1 / 2 . {\displaystyle l\rightarrow l(E)=-n+g(E),\;\;g(E)=-1+i{\frac {\pi e^{2}}{4\pi \epsilon _{0}h}}(2m'/E)^{1/2}.}

Considerada como uma função complexa de E {\displaystyle E} , essa expressão descreve no plano- l {\displaystyle l} complexo um caminho que é chamado de "trajetória de Regge". Assim, nesta consideração, o momento orbital pode assumir valores complexos.

As trajetórias de Regge podem ser obtidas para muitos outros potenciais, em particular também para o potencial de Yukawa[4].

As trajetórias de Regge aparecem como pólos da amplitude de dispersão[5] ou na matriz-S relacionada. No caso do potencial de Coulomb considerado acima, esta matriz-S é dada pela seguinte expressão:

S = Γ ( l g ( E ) ) Γ ( l + g ( E ) ) e i π l , {\displaystyle S={\frac {\Gamma (l-g(E))}{\Gamma (l+g(E))}}e^{-i\pi l},}

onde Γ ( x ) {\displaystyle \Gamma (x)} é a função gama, uma generalização de fatorial ( x 1 ) ! {\displaystyle (x-1)!} .

Esta função gama é uma função meromorfa do seu argumento com pólos simples em x = n , n = 0 , 1 , 2 , . . . {\displaystyle x=-n,n=0,1,2,...} . Assim, a expressão para S {\displaystyle S} (a função gama no numerador) possui pólos precisamente nesses pontos, que são dadas pela expressão acima para as trajetórias de Regge; por isso o nome pólos de Regge.

Ver também

Referências

  1. Ondas gravitacionais e implicações cosmológicas de uma teoria de gravitação com gráviton massivo por Leonardo Silva de Wayne. (biblioteca.universia.net.)
  2. Introdução à teoria de Regge e Pomerons por M. M. Machado publicado pelo Instituto de F´ısica, Universidade Federal do Rio Grande do Sul (Seminar´ ios GFPAE - 2005/02)
  3. The Theory of Complex Angular Momentum. por Gribov, V. (2003) publicado pela Cambridge University press. (Bibcode:2003tcam.book.....G.) ISBN 0-521-81834-6
  4. Harald J.W. Müller-Kirsten: Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific, 2012, p. 395-414; H.J.W. Müller: Regge Pole in der nichtrelativistischen Potentialstreuung, Ann.d. Phys. (Leipz.) 15 (1965) p. 395-411, H.J.W. Müller and K. Schilcher, High-energy Scattering for Yukawa Potentials, J.Math Phys. 9 (1968) p. 255-259.
  5. Quantum Mechanics: Concepts and Applications Arquivado em 2010-11-10 no Wayback Machine By Nouredine Zettili, 2nd edition, page 623. ISBN 978-0-470-02679-3 Paperback 688 pages Janeiro de 2009
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.
  • v
  • d
  • e
  • v
  • d
  • e
Campos de estudo da Física
Divisões
Clássica
Mecânica clássica
Eletromagnetismo
Mecânica estatística
Física moderna
Mecânica quântica
Mecânica relativista
Física de partículas
Física atômica, molecular e óptica
Cosmologia física
Interdisciplinar
  • Portal da ciência
  • Portal da física